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Abstract 

Sailplanes, when launched, need to extract their energy from vertical 

motion of the air in the atmosphere. The usual procedure is to circle 

and climb in vertical currents of limited spatial dimension ("thermals") 

under cumulus clouds and thereafter to exchange the gained height into 

distance by gliding out to the next cumulus cloud. While doing so sail¬ 

plane pilots will often encounter larger scale regions where the atmo¬ 

sphere moves in vertical direction. Upto recent years the optimal strategy 

in such situations was assumed to be to fly slower through regions with 

upward moving air and faster through regions with downward moving air. 

Only a few years ago it was discovered both in theory, from energy con¬ 

siderations, as well as in practice, by contest pilots, that in some 

circumstances more energy could be extracted from the atmosphere when 

the loadfactor, i.e. the total aerodynamic lifting force on the wings 

divided by the weight, was varied. The research reported in this paper 

was set up to investigate this phenomenon. To that end a simple dynamic 

model was assumed for the sailplane and the optimization problem was for¬ 

mulated as an optimal control problem with terminal constraints. This 

optimal control problem was solved numerically for a number of different 

situations as regards to the extent as well as to the strength of the 

vertical currents encountered. The computer program used for this purpose 

was a rather general continuous optimal control program based on the use 

of (conjugate) gradients in function space and a projection operation to 

account for the terminal constraints. Some preliminary results are pre¬ 

sented 
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1. Introduction 

The optimization of sailplane flight trajectories has long been the exclusive 

domain of theoretically inclined sailplane pilots. Wellknown is the so-called 

MacCready theory made popular by 1956 World Champion Paul B. MacCready and 

described very well in the book [R-ll of the 1970-1974-1978 World Champion 

Helmut Reichmann. This theory deals with the selection of the optimal speed 

between the columns of rising air ("thermals") which are often found in summer 

under cumulus clouds and which are the main locations for glider pilots to 

regain the altitude lost by gliding out. The simple solution to this problem 

has led to a number of special instruments and in-flight computing aids with 

which the realization of the optimal solution is made into a very simple mat¬ 

ter. 

Only very recently sailplane trajectory optimization problems have also drawn 

the attention of optimization specialists, who, among others became very much 

interested in the optimal dynamic trajectories of sailplanes (eg. [P-1] [P-2] 

[P-3] and [P-4]). The main reason for this interest was the fact that the dyna¬ 

mic behaviour of sailplanes can be described by some simple nonlinear differen¬ 

tial equations and as such constitutes an interesting example for trying out 

modern dynamic optimization techniques. Recently, it turned out that the opti¬ 

mal trajectories of sailplanes through vertically moving air masses were even 

more interesting than expected: Two completely different optimal solutions were 

found in problem situations which were not very different from each other. It 

is with the second, more or less unexpected optimal solution that this paper is 

mainly concerned with. 

The first type of optimal sailplane trajectory that was found can easily be 

explained. It is based on the logic that a sailplane should fly fast through 

regions where the motion of the air is directed downwards and should fly slow 

through regions with rising air. In the every day situations where regions with 

upward moving air usually alternate with regions with downward moving air, the 

resulting optimal trajectory is a wavy trajectory, that, for similarity reasons, 

is called a dolphin flight trajectory. This type of trajectory is actually being 

practiced regularly these days by many sailplane pilots. To distinguish this 

first type of optimal trajectory from the second to be discussed below, we will 

call it the quasi-stationary dolphin flight trajectory. 



The second type of optimal trajectory that was found differs from the 

first in that the motion of the sailplane is much more brusque and in¬ 

volves strongly varying normal loads: Through regions of downward direc¬ 

ted air the sailplane is flown at very small or even negative normal loads. 

In regions of rising air the sailplane is accelerated until very near the 

point of maximal vertical atmospheric velocity where at high normal loads 

the sailplane is forced to climb. The basic reason for the optimality of 

this type of trajectory is the fact that high normal loads in combination 

with a vertical velocity yield a fast and favorable (potential) energy in¬ 

crease of the sailplane. In order to distinguish this type of optimal 

trajectory from the former, it will be called the instationary dolphin 

flight trajectory. 

The possibility of improving the energy transfer from the moving atmosphere 

to the sailplane by varying the normal load on the sailplane has first 

been considered by some theoreticians under the glider pilots, notably by 

Joszef Gedeon [G-l] and by Wolfram Gorisch [G-2], Both used computer simu¬ 

lations to investigate the phenomenon, neither of both, however, made use 

of dynamic optimization techniques. Pierson and Chen [P-3] encountered the 

second type of optimal trajectory when they applied dynamic optimization 

techniques to the problem of determining the minimum altitude loss trajec¬ 

tory through a prescribed vertical wind distribution. Their finding, which 

they could not explain at that time, provided the motive for the research 

reported on in this paper. This research has as final goal te derive prac¬ 

tical strategies, if possible, by which the optimal instationary dolphin 

flight can be realized. Similar research is being carried out at the Tech¬ 

nical University of Braunschweig by G. Schfinzer [S-l] . 

In the present paper first the energy transfer phenomenon is discussed in 

Section 2. Next an optimal control problem is formulated in Section 3 which 

fits in with the usual optimization of sailplane flights and which has, 

depending on the data, either of both optimal dolphin flight trajectories 

as solution. The main characteristics of the optimal control program used 

to derive the first results form the topic of Section 4 whereas the first 

results themselves are presented in Section 5. A short summary of some pre¬ 

liminary conclusions concludes the paper. 
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2. The energy transfer 

The equations for the transfer of energy from the moving air to the sail¬ 

plane may be derived from simple mechanical considerations. To be considered 

to that end are the forces that act on the sailplane and the absolute velo¬ 

cities of the sailplane relative to an inertial reference frame. Assuming the 

flight of the sailplane restricted to the vertical plane and the gravity 

acceleration g constant relative to a flat earth, the main forces acting on 

the sailplane are as sketched in Figure 1. They are the sailplane's weight 

W = mg and the aerodynamic force R. The latter is usually thought of to be 

sum of a component L, the lift, perpendicular to the velocity relative to the 

air and a component D, the drag, in the direction of the velocity relative to 

the air. The velocity of the sailplane relative to an inertial reference frame 

is the vector sum of the velocity v relative to the air and the velocity u of 

the atmosphere, which is assumed to have only a vertical component. The equa¬ 

tion of motion of the sailplane in terms of the coordinate s of the inertial 

reference frame thus becomes 

ms = W + L + D 

where an arrow -*■ is used to denote vectors and where 

■<r 
s = V + u 

The increase of the kinetic energy per unit of time is given by the inner- 

product of the forces acting on the sailplane and the absolute velocity 

T = <m s , s> = <L + D + W , v + u> 

where the notation < , > is used to denote the innerproduct. The increase in 

potential energy is similarly given by the expression 

U = - <W , v + u> . 

The total energy change of the sailplane is the sum of the changes in the 

kinetic and the potential energy i.e. 
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Fiq^l. Forces, velocities and angles. 
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e = t + u = <l + d ,V + U> 

or, equivalently, as L is perpendicular to v 

E = (L + D , u) + (D , v) . 

If n (see Figure 1) is the angle between the lift vector and the vertical 

and use is made of the wellknown formulas for the lift and the drag 

1 2 L = CL • - p V S 

1 2 „ 
D = CD • 2 p V s 

where and are coefficients, p is the density of the air and S is area 

of the wing, then the energy increase of the sailplane may be written out as 

E = -i. p V2 S (CL u cos n - CD u sin n - CD v> • 

Of interest for the present discussion is the normal acceleration of the 

sailplane, which is usually expressed in terms of the number of times n 

that the normal acceleration is greater than the weight of the sailplane, i.e 

mg mg 

With this definition the equation for the energy increase becomes 

CD CD 
E = n*mg (u cos n - -pr~ (n,v) sin n - (n,v) v) 

L 

where the notation — (n,v) is used to emphasize that the drag-lift ratio 

corresponds to a situation (or to be precise an angle of attack), where at 

a velocity v the lift force L equals n times the weight. In this case it 

makes sense to define a hypothetical rate of climb 

(n,v) v w (n,v) 
P 
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which is the rate of climb that a sailplane that weighs n times as much 

as the actual sailplane would have in equilibrium flight at the velocity v. 

With this definition the energy increase per unit time of the sailplane 

is given by the illustrative expression 

o 
E 
mg 

From the expression it is obvious that energy transfer from the moving 

atmosphere to the sailplane is directly proportional by the normal accelera¬ 

tion of the sailplane, the magnitude of which the pilot can select from a 

relatively broad range. From the expression it also immediately follows 

that it is advantageous to make use of high or low normal accelerations 

depending on whether the vertical velocity within the brackets in the 

expression is positive or not, i.e. whenever the following inequality is 

satisfied 

u cos n + w (n,v) >— (n,v) u sin n ** 0 . 
P CT 

This conclusion holds for any instant of time during a flight of the sail¬ 

plane through an atmosphere with a variable vertical velocity. The optimal 

trajectory in such circumstances is the subject of the next section. 

3. The optimal control problem 

In order to get some insight in the problem of the optimal energy transfer 

from the moving atmosphere to a sailplane, the problem of the best strategy 

to fly a sailplane through a (model) thermal was considered for different 

values of the vertical atmospheric velocity and for different horizontal 

dimensions of the thermal. This problem can be formulated as an optimal 

control problem: An appropriate choice for the quantity to be optimized is 

the relative time, which is defined as the sum of the actual time to fly 

the horizontal distance specified and the time necessary to recover the 

lost height in the next therraaJ. This relative time thus is dependent on 

and that explains the adjective "relative" - the value of the rate of climb 
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in the next thermal. By this choice of object function the problem 

formulation fits in very well with the usual practice in sailplane 

trajectory optimization, (cf. de Jong [J-l], [J-2]). 

The equations of motion that present themselves are the usual simpli¬ 

fied equations for motion in the vertical plane. They apply to the case 

where the sailplane is considered to be a point mass subject to only 

the force of gravity and to an aerodynamic force, the components of 

which are given by the wellknown lift- and dragformulas. Assuming that 

the relation that exists between the lift- and the drag coefficients 

in stationary flight continues to hold in instationary situations, the 

lift coefficient may be selected as the control variable. As initial 

and final conditions for the velocity of the sailplane those values may 

be chosen which would have been optimal if only isolated thermals wlth 

the hypothesized rate of climb would have been present. 

In formula form, the optimal control problem thus may be formulated as 

follows: 

"For all t <£ [tb»tf] select CL(t) so as to minimize 

t 
f 

t 
f 

t. t. 
b 'b 

subject to the equations of motion 

o o 
X = V 

X 
y = V 

y 

v » f- life .v) sin n - D(C ,v) cos ri ] / m 

v =* [L(C ,v) coso- D(C ,v) sin o - rag] / ra 

where 
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(v2 + (v2 - u (x))2)*5 
x y a 

n = arctan (^) 
-e - 2.5) 

u (x) = u e 
a a,max 

[1 - <f - 2.5) ] 

W = l kiCL1 ' 

i-0 

subject to the initial and final conditions 

xlt^) = 0 x(tf) = 5R 

y(tb> = 0 y(tf) free 

W = Vx(tf) = Vx,MC(Z> 

Vy(tb) = Vy(tf> = Vy,MC(Z) 

and, finally, subject to the control constraints 

p < c < c 
L, min L L,max 

It may be remarked that the specified distribution ua(x) for the vertical 

atmospheric velocity is equal to the distribution advocated by Gedeon [G-l ] 

for a single thermal. The velocities v^ MC(z) and vy are the veloci¬ 

ties that correspond to the optimal solution of the classical sailplane 

trajectory or MacCready problem for the case that there exist only isolated 

thermals in which a net rate of climb equal to z can be realized. 

The optimal control problem as formulated above is a free final time pro¬ 

blem which can be easily simplified for computing purposes by the choice 

of the horizontal coordinate x as new independent variable instead of the 

time t. Using the relation that exists between the derivatives with respect 

to t and x 
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, da da dt 1 ° 1 «> 

dx dt dx o v 
x x 

the optimal control problem may be formulated in a similar way as before 

as a fixed terminal time problem with the object functional replaced by 

5R 5R 

( 5* _ i [ Otax 
i V Z J V 
' x J x 

0 " 0 

and the equations of motion replaced by 

x' = 1 y' =» v /v 
J y x 

= [- L(Cl,v) sin n - D(Cl,v) cos n 3 / rnVx 

v' = [L(C /V) cos n - D(c.v) sinri- mg] / mv , 
y Xj Li x 

where L(C ,v), D(C.,v), v, hi u (x) and C„(CT) are defined as before. 
L L a D L 

The initial and final conditions as well as the control constraints 

remain unchanged in this formulation. 

4. The computer program 

The optimal control problem formulated in the preceding section was numeri¬ 

cally solved for a number of different cases on the Burroughs B7700 computer 

of the Eindhoven University of Technology with the aid of the computer pro¬ 

gram OPTCONTROL. This program is a rather general program written in Algol 60 

for solving numerical optimal control problems by means of a conjugate gra¬ 

dient algorithm in function space. The program is a further development of 

the program that was designed for the determination of the optimal strategies 

for a controlled World model and that as such was described by de Jong and 

Dercksen [J-3] . Since then the program has been expanded, the main expan¬ 

sion being that terminal constraints can now also be taken care of. This is 

realized by the use of a projected gradient in function space in combination 

with a restoration procedure. For the projection of the gradient use is made 

of the modified Gram-Schmidt algorithm. The program has also been expanded 
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to be able to handle free final time problems, but this facility was 

not used in the present case. The control constraints were taken care 

of by means of the clipping technique already described in the paper 

mentioned above. 

In its present form the program OPTCONTROL has the nice feature of being 

quite generally applicable and rather easy to use. Its main disadvantage 

is its relatively poor efficiency: For the forward integration of the 

state equations and the backward integration the adjoint equations 

use is made of a standard fourth order Runge-Kutta integration procedure 

with in most cases 50 integration steps. One integration of the simple 

system of the state or co-state equations costs in the order of 1 sec 

processing time. With in the order of 300 integrations (on the average) 

being not unusual for convergence, the total amount of computer time thus 

required is much too high for the research program being envisaged. Inves¬ 

tigations are currently underway with the goal to obtain a more efficient 

procedure for the numerical solution of the optimal control problem at 

hand. As an aside at this point it may be remarked that the high average 

number of integrations required for convergence may be attributed for a 

large part to the poor performance of some individual subroutines, of 

which should be mentioned in particular the line-minimization procedure 

and the convergence test. 

5. Numerical results 

Solutions of the optimal control problem were obtained for an LS-3- 

sailplane, which is a modern 15m-racing-class sailplane, that from a 

computational point of view is specified by the following data 

wing area S = 10.5 m^ 

weight W = 346,5 kgf 

and by the coefficients of the polynomial that approximates its C^- CD - 

relationship between C_ , = - 1.4 and C = + 1.4 
^ L,min L,max 

k0 = + 0.0118 

k2 = + 0.0770 

k = + 0.0166 
4 

k 

k, 

'3 

1 
= - 0.0540 

0.0254 
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The horizontal and the vertical velocities, that correspond for an LS-3 

to the optimal solution of the MacCready problem and which served as 

initial and final conditions are, depending on the net rate of climb z 

assumed for the isolated thermals respectively, for z = 2m/s 

VMC,x = 4U631 m/s VMC,y="1 -344 m/s 

and for z = 4 m/s 

vmj„ = 48.708 ra/s v ^ =-2.064 ra/s . 
MC,x MC,y 

As first step in the investigation the optimal control problem was for 

comparison purposes solved for 4x 2x 2= 16 different combinations: 

4 ranges (or, equivalently, 4 radii of the model thermal) 

500 m (R = 100) , 1000 m (R = 200 m) 

2000 m (R = 400) , 4000 ra (R = 800 ra) 

2 maximum atmospheric velocities, u 
a,max 

2.5 m/s , 5 m/s 

2 hypothetical net rate of climb , z 

2 m/s , 4 m/s . 

A survey of the most relevant data on the effects of the optimization in 

these cases is presented in Table 1. To be noted there is that the resulting 

type of the optimal trajectory is conform the expectations: for large ranges 

(or large termal radii) and comparatively low (initial and final) velocities 

the quasistationary dolphin flight trajectory ("type I-trajectory" according 

to Pierson and Chen [P-3]) is optimal, for short ranges (small thermal radii) 

and high initial velocities the instationary dolphin flight trajectory 

("type II-trajectory") is optimal. For the intermediate range the type of 

the trajectory was not completely clear ("type l/ll").0f interest to note is 

that the effects of the optimization differ depending on the type of optimal 

trajectory. In case of a quasistationary dolphin flight (type I) trajectory 



Combinations 

Range/u /z 
a,max 

Constant velocity trajectory Optimal trajectory 

h(m) t(sec) t . (sec) 
rel 

type h(m) t(sec) t .(sec) 
rel 

At ,(sec) 
rel 

it ,(%) 
rel 

500/2.5/2 

500/2.5/4 

500/5 /2 

500/5 /4 

1000/2.5/2 

1000/2.5/4 

1000/5 /2 

1000/5 /4 

2000/2.5/2 

2000/2.5/4 

2000/5 /2 

2000/5 /4 

4000/2.5/2 

4000/2.5/4 

4000/5 /2 
4000/5 /4 

- 10.815 

- 16.646 

- 5.482 

- 12.110 

- 21.588 

- 33.336 

- 10.800 

- 24.325 

- 43.146 

- 66.330 

- 21.133 

- 47.802 

- 86.368 

-132.940 

- 43.595 

- 96.390 

12.001 

10.258 

12.000 

10.256 

24.013 

20.512 

24.013 

20.495 

48.056 

41.088 

47.899 

41.124 

96.082 

82.128 

96.087 

82.141 

17.408 

14.419 

14.741 

13.283 

34.807 

28.846 

29.413 

26.576 

69.629 

57.670 

58.465 

53.074 

139.266 

115.363 

117.884 

106.238 

II 

II 

II 

II 

II 

II 

II 

II 

I 

I/H 
I 

I/H 

I 

I 

I 

I 

- 8.426 

- 14.799 

+ 7.152 

- 0.267 

- 17.826 

- 29.838 

+ 0.909 

- 11.621 

- 27.372 

- 60.436 

+ 24.161 

- 34.934 

- 56.542 

-116.711 

+ 59.020 

- 23.739 

11.616 

9.962 

11.524 

9.941 

24.831 

20.755 

25.142 

20.960 

55.107 

42.366 

60.943 

43.577 

107.286 

85.645 

121.539 

96.349 

15.829 

13.662 

7.948 

10.008 

33.744 

28.214 

24.688 

23.865 

68.793 

57.475 

48.863 

43.577 

135.557 

114.823 

92.029 

102.284 

1.579 

0.757 

6.793 

3.275 

1.063 

0.632 

4.725 

2.711 

0.836 

0.195 

9.602 

0.764 

3.709 

0.540 

25.855 

3.954 

9.07 

5.25 

46.08 

24.66 

3.05 

2.19 

16.06 

10.20 

1.20 

0.34 

16.42 

1.44 

2.66 

0.47 

21.93 

3.72 

Table 1. Comparison of the effects of the optimization on the trajectory data. 
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Fig. 2. Effect of model thermal and optimization on the relative 

height. Arrows represent gain due to optimization. 
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Figure 3a: Timehistories for the optimal solutions 
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the actual time of flight as well as the actual height gain are large in 

comparison with the non-optimal constant velocity trajectory. In case of 

instationary dolphin flight (type II) trajectory the main effect of the 

optimization is a height gain, while the total flight time is approximately 

the same or even less then in case of the non-optimal constant velocity 

trajectory. 

The appropriate measure for judging the effect of the optimization is the 

relative time t defined above. An equivalent and perhaps more illustrative 
rel 

measure is the relative height, hrel, which is the product of the relative 

time and the corresponding hypothetical net rate of climb z 

hrel - W2 • 

An impression of to what practical results the optimization amounts to may be 

gathered from Figure 2, in which schematically the extra gains in relative 

height due to the optimization are presented in comparison with the gains in 

relative height that result when the model thermals are flown through at 

constant velocity. It may be noted that the extra gains are relatively the 

smallest for the intermedidate range where the type of the optimal trajectory 

is not clearly defined. 

An illustration of the differences between the two types of optimal trajecto¬ 

ries is given in Figure 3 where for two typical cases plots of the time 

histories of some of the relevant variables, i.e., the lift coefficient C^, 

the normal acceleration factor n, the attitude angle 9 (cf. Figure 1), the 

height h, the total energy height hTE, the absolute rate of climb vy and the 

total velocity v are compared. It is hoped for that the study of plots like 

these eventually may lead to some strategy for optimal energy extraction 

by sailplanes that can be used in practical situations. 

6. Concluding remarks 

In this paper the first preliminary results h'Sve been presented of an inves¬ 

tigation into the optimal energy transfer from a moving atmosphere to a 

sailplane. Consideration of the physical laws involved leads immediately to 

the conclusion that this energy transfer may indeed be influenced by the 
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pilot who has the option to change the normal load factor of the aero¬ 

dynamic forces on the sailplane. Varying the loadfactor, however, also 

influences the trajectory and the determination of the optimal energy 

transfer thus turns out to be equivalent to the determination of the 

optimal trajectory, provided that the appropriate object functional is 

used. The particular choice of the relative time for object functional 

fits in with the usual quasistationary sailplane trajectory optimization 

and as such seems to be the best starting point for a search for a prac¬ 

tical optimal strategy. 

Using a model for a vertical atmospheric velocity distribution that has 

generally been accepted as a realistic model for the actual atmosphere, 

it was found that the two completely different types of optimal solutions 

encountered by earlier investigators also result in case of this realistic 

model. In fact, the parameter values for which either of both types of 

optimal trajectories result are quite common values which are quite likely 

to occur in practice. A further search for a strategy that selects and 

generates the appropirate optimal trajectory seems therefore to be quite 

worth while from a practical point of view. 
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