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Estimating abilities: inference for random variables*^ 

Charles Lewis**) 

Summary 

A nonparametric definition of an individual's ability on a uni- 

dimensional scale based on binary items is proposed. Either Mokken or 

Rasch scales may be used. Formal Bayesian inference for abilities 

so defined is developed and attention is given to the problem of 

choosing an appropriate prior. Sensitivity of posterior inferences 

to a) choice of prior and b) response pattern is discussed and 

illustrated with artificial examples. 

Introduction 

The concept of a latent trait (simply referred to as an ability 

in the following) lies at the heart of much of psychometric theory. 

Consequently, the continuing arguments over the status of this 

concept, though largely confined to the domain of factor analysis 

and factor scores, are also relevant for psychometrics as a whole. 

It is in the context of mental test theory that the essentially 

statistical nature of an ability (or true score) has been most 

clearly developed: from early definitions as the score on a test 

of infinite length, to theories about the mean observed score over 
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spring meeting of the social science section of the VVS, Utrecht, 

20 May, 1981 

**) Vakgroep Statistiek en Meettheorie, FSW, Rijksuniversiteit Groningen. 



18 

a population of replications, occasions, or items, to modern consis¬ 

tency proofs for estimation in latent trait models, where both the 

number of individuals and the number of items are allowed to 

approach infinity. Although each of these developments is in harmony 

with the limiting relative frequency ideas on which standard sta¬ 

tistical theory is based, their practical relevance for the common 

situation in which a limited group of individuals is tested once, 

using a limited set of items, may well be questioned. 

In the following sections, an alternative statistical treatment 

of ability will be discussed and its implications for inference 

explored. The general framework adopted in this treatment is a 

Bayesian one. Consequently, there is no need for any reference to 

infinite sequences of observations or, indeed, to any observations 

other than those actually made, when considering an unknown quantity 

such as an ability. Instead, prior information regarding the value 

of the ability for a given individual is expressed in terms of a 

probability distribution and is combined via a model and Bayes1 

Theorem with the responses of that individual to a given set of 

items. The result is a modified probability distribution which 

describes the total information available regarding the indivi¬ 

dual s ability. It is in this sense, rather than in sampling terms, 

that the true value of the ability is considered to be a random 
variable. 

Although a Bayesian approach to making inferences about abilities 

is quite distinct from standard treatments, it is hardly new. Develop¬ 

ments to date, however, have typically used highly restrictive for¬ 

mulations of a model relating ability to responses, the author's 

joint work (Lewis, Wang, & Novick, 1975) being a case in point. While 

restrictive models may have their place at the level of test develop¬ 

ment , as a guide to the selection and modification of items, these 

same models become less attractive when the goal is to use an already 

developed test to provide information about individual abilities. 

In the latter case, model violations are both more difficult to 

detect and more likely to have serious consequences. 
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As a result of these concerns, a "nonparametric" latent trait 

model is adopted in the following sections, and used to provide 

Bayesian inferences about abilities. It should be noted that the 

model itself is also not new. It appears in the isotonic regression 

literature (see, for instance, Barlow, et al.,1972,and a further 

developed version is employed in a non-Bayesian approach to scale 

construction proposed by Mokken (1971). The author (Lewis, 1970) 

has also considered this model from a non-Bayesian point of view. 

A recent Bayesian analysis of a related model is given by Stewart 

(1979). Neither he nor the workers in the isotonic regression field 

give any attention to a quantity analogous to an ability, however. 

Thus, what is^ new in the following is the possibility of making 

Bayesian inferences about individual abilities while placing minimal 

restrictions on the form of the relation between ability and responses. 

Model and theoretical development 

Suppose there are k_ dichotomous items under consideration and 

that, for the individual of interest, the probability of success on 

item j_ is denoted by it^. There are two basic assumptions used in the 

following. First, assume it is possible to order the items a priori 

according to their difficulty for the individual so that 

1 > itj > ^2 > ••• > > 0. 

Second, assume that, given , the individual's responses to 

the items are mutually independent. 

Now a definition of the individual's ability on the scale 

defined by these items is required. If 0 is used to denote this 

ability, let 

0 

0 if itj < .5 , 

i if 5, .5 > 'rc.j+i» f°r i11!’ ...jk-X, and 

(2) 
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Thus e is the number of items for which the probability of success 

is at least .5. Note that this is a purely ordinal definition and 

does not even assume an underlying continuous scale. Different 

ability levels acquire meaning from the content of the items used. 
Also, although this model is "nonparametric", it is compatible with 

a "parametric" latent trait model (such as the Rasch model) which 
assumes parallel item characteristic curves. In such a model, the 
items are ordered in difficulty for all individuals once the order 

of the item difficulty parameters is known. Moreover, 8 as defined 
in (2) simply locates the parametric ability in one of the k+1 

intervals defined by the difficulty parameters of adjacent items. 
Although primary interest is in making inferences about 0, 

the formal analysis must take place at the level of {*.}. Let y. 

equal the number of correct responses out of ni total responses 

to item JL The most obvious case will be where all n^ equal unity, 
though there is no reason to exclude the possibility of additional 

replications usingitems which appear to be (at least roughly) equivalent. 
The case where ni equals zero for one or more items should also be 

allowed. These would be items which, for one reason or another, were 
not answered by the individual. If these items, nonetheless, form 

part of the scale, there is no reason to exclude them from the 

analysis. These extensions might both be relevant, for example, 
in the case of tailored testing. 

In terms of the definitions and assumptions given so far, the 
likelihood for {u^} satisfying (1) is given by 

(l-*i)Vyi . (3) 

Natural conjugate prior densities for {^} of the f c 

k o,-l B.-l 
coi^il O-V1 (4) 



with all a.j and positive to assure integrability, seem to provide 

a sufficiently rich choice for practical work. (Guidelines for choosi 

the a., and 8^ will be discussed in the following section.) The prior 

in (4) may be thought of as a product of beta densities for the indi¬ 

vidual it.., truncated to conform with the order restriction (1). As a 

consequence of the truncation, the ^ are not mutually independent. 

Their dependence, however, is a direct result of prior order 

information and does not involve any additional structural assumption 

When Bayes' Theorem is applied to (3) and (4), the result is the 

joint posterior density for {t^.} given the yi and ni: 

C1 in1 "i^'V- "i/WV1 (5) 

In the present application of this analysis, what is needed in 

place of (4) and (5) are the prior and posterior distributions of the 

ability e. From the definition (2), it is clear that 

Prob (9=0) = Prob (ttj < .5), 

Prob (9=i) = Prob (^ >. .5 > ni+1) for i=l, .... k-1, and 

Prob (e=k) = Prob (TTk .5). (6) 

Thus, in general, repeated integration of (4) and (5) will be 

necessary to achieve the desired results. The following argument 

shows that this is not so formidable a task as might at first be 

thought. 

To begin with, the problem may be generalized somewhat by 

considering a joint density for {i^} satisfying (1) which has 

the form 

k 

C.^ih) » (7) 

for a sequence {g^} of positive integrable functions defined on 

the interval [0,1]. Two additional sequences of functions based 

on {g^} are also required. Let 
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yu) *= 1, u < 1. 

For i=l.k, let 

fi(“) = ^ g^t) dt, 0^ U>< 1 . (8) 

Also, let 

hk+l(u) = ^ °'v< u < 1. 

For i=k, k-1.1, let 

hi(u) = /U g^t) h.+1(t) dt, O^u^l. (9) 

These sequences provide two paths for successive integration of 

the joint density (7). Since the total integral of the density 
must equal unity, 

yo) = tyi) = C'1 . 

Although it is not of direct interest in the present development, it 

may be noted that the marginal density for any is given by 

C WV My hi+l(’,i)- (10) 

The probability distribution for 8 based on (7) may be expressed 
as 

Prob (9=i) = C f.(.S) hi+1(.5) , for i=0, 1, ...,k . (11) 

Here integration has first been carried out with respect to all 

iij for j < 1 or j > i+1. This gives the bivariate density for ^ 

and iri+1. Finally, integration is carried out with respect to ir. 

for all values greater than or equal to .5, and with respect to 
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"i+l for a11 values 1ess tllari -5. This gives 

Prob (ni >, .5 and ir.+1 < .5) 

which, by (6), is the desired probability that the ability e equals 

i_. (Obvious modifications of the above argument are necessary for 

i_ equal to zero and ) 

To illustrate, consider a test with k = 4 items. The joint density 

(7) may be written as 

'1,2,’r3’lr4^ = ^ ’ (^2) 
for 

1 > 1r1 > w2 > ir3 > 7T4 > 0 . 

Obtaining, for instance, the probabiltiy that 8 equals 2 may be repre¬ 

sented as 

cz-^_j- 

y_^4^3) 

h3(.5) 

= C f2(.5)h3(.5) . (13) 

In general, the integrations in (8) and (9) are most conveniently 

carried out by numerical means, rather than analytically. It is im¬ 

portant to note that the amount of computational effort required is 

a 1 inear function of the number of variables (k), rather than 

exponential, as is often the case with multiple numerical integration. 

This is a direct result of the product structure of the joint density 

(7), and implies that it is computationally feasible to analyze 
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responses for relatively long tests. The author has written an inter¬ 

active program .ABILITY, which carries out the necessary computations 

to obtain distributions fore . The present version operates within 

reasonable time and accuracy limits for tests of up to 30 items 

(or 30 sets of equivalent items). A non-interactive "production 

version" could undoubtedly double this maximum. 

Although simple analytic results regarding the distributions for 

0 are, in general, elusive, there are exceptations. One of these occurs 

for the prior distribution based on (4) with all ^ = e,- = 1. This 

gives a uniform density for {*..} over the region (1), which happens 

to be a member of the ordered Dirichlet family (for which standard 

results are available). This density may be expressed in the general 

form (7) with all g^u) = 1 identically. For this case, 

f^u) = (l-u)V(i:) and 

hi+l(u) = uk'i/(k-i): , for i=0, .... k. 

Thus 

O'1 = fk(0) = h^l) = (kl)'1 

and .using (11), 

Prob (eH) =TT^rrr(-5)k. (14) 

the probability distribution for a binomial random variable with 

parameters and .5 . 

In the case where k=4, for instance, the joint prior (12) 
becomes 

P^JSTT^JTTg'lty) = 24 

in the region (1). Moreover, 
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= f ~ 1 ~ "2 ’ 

f2(.S) = ; (1 - n2)dn2 = 4(1 - „2)V5 = (.5)z/2 , 

^^4(^3) = / <1*4 = ir-, » and 4 ~ 3 

h3(.5) =o/'5"3dit3 = Jir32p5=( .5)^/2 . 

Thus, from (13), 

Prob (0=2) = ^ (,5)4 = .375 

which agrees with (14) when i=2 and k=4. 

In fact, the result (14) can be generalized to the prior for e 

based on (4) for any case where all = a > 0. To see this, 

define a strictly increasing transformation ^(-tt) such that 

4(0) = 0 , 
4(1) = 1 , and 

= b(ir(l-Tr))a 1 for some b > 0. 

For symmetry considerations. 

4(-5) = .5 . (15) 
Letting 

4-j = 4(1^) » for i=l.k, 

and transforming the prior (4) to a prior for {4^}, it is clear that 
the result will be a uniform density over the region 

1 > > ... > 4^ > 0 . 

Moreover, because of the relation (15), the definition of e given in 
(2) may be restated, replacing ^ by <|)^. Consequently, the conditions 
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leading to (14) have been reproduced exactly, and 6 must have as prior 

a binomial (k, .5) distribution whenever the prior forlT^.} has the 

form (4) with all and 6^ equal and positive. The importance of this 

result is that the same prior for 0 may arise from a whole family of 

priors for {tt..} , a fact which will be exploited in the following 
section. 

Choice of a prior distribution 

With attention restricted to joint prior densities for {^} 

having the form (4), the important question of selecting a prior is 

reduced to choosing values for the oi and ^ (henceforth simply 

referred to as the prior parameters). Given the multidimensional 

character of (4) and the secondary interest in the , it seems 

reasonable to concentrate on the consequences a given set of prior 

parameter values have for the prior distribution of the ability 

parameter e. Except for the special cases mentioned in the previous 

section, these consequences are probably best explored with a trial- 

and-error procedure, using an interactive computer program such as 

ABILITY, mentioned earlier. Through successive adjustments of the 

values of the prior parameters, almost any desired shape for the 
prior of e may be obtained. 

As suggested by the final result of the previous section, it 

is often (perhaps always) possible to produce - at least roughly - 

a given prior distribution for e from a whole range of priors for 

{ir.j} . Far from being a problem, this introduces an important 

degree of flexibility in the analysis of responses to test items. 

Among the prior densities for {ir^} yielding a given prior for 8, 

those with larger values of the prior parameters may be associated 

with greater amounts of prior information regarding the distribution 

of a. The result is that the corresponding posteriors for 9 will show 

less change from the common prior, i.e. less sensitivity to the infor¬ 

mation contained in a given set of responses. 

This is illustrated in Fig. I for a case with 10 items and two priors 
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^3-U-re ^ Two pr1or distributions for e with the same form but haying different 

sensitivities applied to two data sets. 

i 

a 
i 

Prior with nore sensitivi 

12 3 4 

3.0 .5 .5 .5 

.5 .5 .5 .5 

5 6 7 8 

.5 .5 .5 .5 

.5 .5 .5 .5 

9 10 

.5 .5 

.5 3.0 

Prior with less sensitivity 

1 2 3 4 5 6 7 8 

6.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

9 10 

1.5 1.5 

1.5 6.5 

0 
01 
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for {n^} which produce (approximately) the same prior for 8. The form 

chosen is symmetric and unimodal, but has greater variance than the 

binomial (10, .5) which would have been obtained with equal values 

of the prior parameters. 

In this figure, the item numbers are marked on the horizontal 

scales and probability is indicated on the vertical scales. The 

probability that 8 = i is represented by a vertical column of stars 

between the marks for items 2. and i+1. Each star represents .02 

probability units, after rounding, so that there are (approximately) 

50 stars distributed over the 11 categories for each graph. 

The uppermost two graphs show the two priors for 8 and are 

(to the precision of the figure) identical. The two middle graphs 

show the posterior distributions for 8 resulting from analyses of 

a "perfect" data set with 5 correct responses (the y^ are given above 

the item numbers) using both priors. From the data alone, the best 

guess for 8 is, unambiguously, 5 . The posterior distribution on the 

left, with its higher peak between items 5 and 6, has responded more 

to this information, while the one on the right is closer to the 

form of the prior. From the labels above the two columns of graphs, 

it may be seen that the prior on the right is based on larger values 

for the prior parameters. 

The difference in sensitivity is illustrated again in the 

two bottom graphs, where the posteriors are based on the analyses 

of another perfect data set, this time with only 2 correct responses. 

While both posteriors represent a compromise between prior and data, 

this compromise is clearly more in favor of the data in the left- 

hand grapn. The posterior on the right retains more of both the 

breadth and the centering of the prior. To summarize, larger values 

of the prior parameters represent the fact that more is known before 

the test is taken. Thus, relatively less is learned from the test 

results and the posterior looks more like the prior. 

What about the actual choice of a prior distribution for e? 
A first point is that this must go hand in hand with the choice of 

potential items for the final test. Presumably, it would be wise - 



if possible - to choose items which give a good coverage of the 

likely range of ability in the group of interest. This would imply 

a broad distribution for 8, tailing off for values close to 0 and k. 

Of course, the chosen items should also identify ability levels of 

interest, since e is only defined relative to their difficulties. 

Finally, there should be enough items to allow substantial revision 

of the prior based on test results. (If this cannot occur, why 

bother to give the test?) 

Once items have been chosen and tested to the point where they 

can be ranked with confidence, and something has been learned about 

the abilities of potential test-takers, it may be reasonable to 

proceed by drawing a rough sketch of the desired prior for e and 

then finding prior parameter values which produce this shape via 

trial and error, as mentioned earlier. A tentative choice should 

be tried out on a number of data sets (again using a program such 

as ABILITY) to observe the degree of sensitivity of the prior 

(as in Fig.l). If, for instance, the prior appears to be too 

insensitive to data, one should try to produce the desired 

shape with smaller values of the prior parameters. This new 

choice should also be checked and the process continued until 

the results are judged satisfactory. 

The above procedure may appear to be overly time consuming. 

This objection, however, cannot be maintained when the choice of 

prior is viewed as one step in the sequence of item construction, 

tryout, revision, administration, and final analysis. For any 

test which has been carefully prepared, it is surely worth a 

few hours of thought, discussion, and computer work to adequately 

assess the prior information available about the ability being 

measured. As with the rest of test development, choosing a prior 

for 9 has a basically subjective character. The subjective choices 

should, however, be at least broadly defensible, with regard to both 

their origins and their consequences. Indeed, one of the advantages 

of adopting a formal Bayesian framework is that it makes subjective 

decisions and their implications explicit and, thus, open to 
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examination and discussion. Although care should be exercised in 

the selection of a prior, the precise choice does not appear to be 

too critical with regard to posterior inferences about e. For 

example, the corresponding prior parameters of the two priors in 

Fig.l differ by factors of 2 to 3. The resulting pairs of posteriors 

for e, while different in ways discussed above, still bear a strong 

resemblance within pairs. Based on the data set with two correct 

responses, for instance, an approximate 90% interval for e ranges 

from 1 to 5 using the more sensitive prior and from 1 to 6 using 

the less sensitive one. The practical requirement that any chosen 

prior be substantially modifiable by the data guarantees that sub¬ 

stantial robustness to the details of prior specification will be 
typi cal. 

Posterior inferences and response pattern 

One question of considerable practical interest is the sensi¬ 

tivity of the posterior distribution of e to various response patterns, 

all having the same number of correct responses. Within the Rasch model, 

for instance, the number of items correct is a sufficient statistic 

for making inferences about an individual's ability, so the response 

pattern becomes ancillary information.That this is not so for the 

present model may be illustrated by means of an example. 

Returning to the more sensitive prior illustrated in Fig. 1 

for a 10 item test, three response patterns will be analyzed, each 

having 4 correct responses. Fig. 2 (employing a format similar to 

Fig. 1) shows, first, the posterior distribution of ability for an 

individual responding correctly to the 4 easiest items and incorrectly 

to the remaining 6. The posterior mode is ate= 4, reflecting the 

data, and the distribution is positively skewed, reflecting the 

prior information. The middle graph illustrates the posterior for 

an individual responding correctly only to the first three items 

and to item 5. From the data alone, values of 3 and 5 for e seem 

most likely, with 4 less likely. Compared with the top graph, this 
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Figure 2. Posterior distribution for 0 based on the more sensitive 

prior of Fig. 1 and three response patterns, each with 

four correct answers. 
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is reflected in the posterior: the probability that e = 4 decreases 

to the extent that 4 is no longer the modal value. (The fact that 5, 

rather than 3, assumes this role is a result of the prior information.) 

Finally, Fig. 2 includes a graph of the posterior for 6 based 

on a response pattern in which only items 2,3 4,and 5 were answered 

correctly. Here the incorrect response to item 1 appears to be atypical, 

and the data point to an ability of 5. The bottom graph reflects 

this. Most notable in comparison with the middle graph is the decrease 

in the probability that 0=3. The effect of the incorrect response 

to item 1 may best be seen by comparing this posterior to the one 

in Fig. 1 resulting from the more sensitive prior and correct responses 

to the first 5 items (middle left). The "imperfect" pattern produces 

a less definite peak and a clear negative skewness as compared with 

the sharp and symmetric posterior in Fig. 1. Intuitively, this seems 

to be a satisfactory representation of the extra uncertainty resulting 
from such a response pattern. 

While the shape of the posterior distribution for ability has 

been shown to be sensitive to the pattern of correct responses, it 

is still of interest to see how strongly this is reflected in posterior 

inferences about 6. Conclusions here will obviously depend on the 

particular inferences being considered. Continuing with the example 

of Fig. 2, suppose it was the goal of testing to distinguish between 

individuals for whom the posterior probability that 9 >,5 is less 

than or greater than .5 . For the three patterns illustrated in 

Fig. 2, the following results hold: 

Prob (6 >. 5|1,2,3,4 correct) = .426 , 

Prob (9 j, 5[ 1,2,3,5 correct) = .466 , and 

Prob (0 >.5|2,3,4,5 correct) = .524 . 

Note that the prior probability that 9 5, 5 is .592. Thus, all three 

response patterns have resulted in a reduction of this value. The 

first two have reduced it sufficiently to change the individual's 
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classification, while the third maintains the prior choice. 

This combination of data and inference has illustrated some 

sensitivity to response pattern. Now suppose the goal of testing 

is to obtain an interval for e which contains the true value 

with a posterior probability of approximately .95. For the 

"perfect" response pattern, the "shortest" such interval ranges 

from 2 to 7 (inclusive). The variation in the probability content 

of this interval for the three posteriors of Fig.2 is as follows: 

Prob (2 ^ 6 < 7 |1,2,3,4 correct) = .958, 

Prob (2 ^ 6 <7 |1,2,3,5 correct) = .951, and 

Prob (2 ^ e < 7 |2,3,4,5 correct) = .941. 

While systematic, it is doubtful that this degree of variation could 

have much effect on the interpretation of the interval estimate for e. 

While only one example, the above gives some feeling for the 

range of results that may be expected. Sensitivity to response 

pattern is, in general, an increasing function of the sensitivity 

of the prior, the number of items, and the extremeness of the pattern. 

The number of correct responses remains, however, the most important 

single piece of information associated with a given pattern. 

The results of this section have a second interpretation, namely 

as a study of the robustness of posterior inferences to violation of 

the ordering assumption (1). Thus, different patterns with the same 

number correct may be viewed as the same set of responses after 

ordering the items in different ways. Considered this way, it 

appears that only relatively extreme violations of (1) will have 

much effect on inferences (how much depending on the data and the 

sort of inference being made). There is, of course, also the issue 

of misinterpretation of 6 itself if the items have been incorrectly 

ordered. This is a substantive matter which should be considered 

carefully in any testing situation where these methods might be applied. 

On substantive grounds, it may be safer to group together as equivalent 

items for which the ordering is unclear, rather than to risk working 

with an incorrect order. 
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