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FISHER , 

een programma voor de analyse van rxc-tabellen bij kleine steekproeven 

Pieter M. Kroonenberg, vakgroep WEP, Schuttersveld 9, Rijksuniversiteit Leiden 
& Albert Verbeek, Inst v Math Stat en Sociol Inst, Rijksuniversiteit Utrecht 

Samenvattlng 

Dit artikel komt vrijvel overeen met de voorlopige versie van de gebrulkershand- 

leiding van FISHER, een programma voor de analyse van tvee-dimensionale tabellen, 

vooral bij kleine steekproeven. Het voornaamste versohil is dat de inputfceschri;ving 

hier is weggelaten. FISHER is vooral gesohreven voor het efficient berekenen van 

"exacte" (in tegenstelling tot asymptotisohe) overschrijdingskansen voor zes toetsen 

op onafhankelijkheid of homogeniteit. De zes toetsgrootheden zijn: Pearsons X2, 
Kruskal-Wallis, de correlatieratio, Kendalls tau^, Spearmans rangcorrelatie, en 
de gewone correlatiecoefficient. 

In de laatste twee paragrafen wordt een voorbeeld van output gegeven en een 

vergelijking gemaakt met andere programma's. Het'is vanuit sooiologische optiek 

leerzaam om te zien, hoe rommelige en ongsdefinieerde output van SPSS voor’zoiets 

alledaags als 2x2-tabellen tien jaar lang gebruikt kan worden, zonder dat lit tot 

opstandjes of gemor onder'is gebruikers aanleiding geeft. (Tussen haakjes, onze 

bests vrisnden gehruiken SPSS, en -vijzelf ook, en al jarenlang ... ) 

Beschlkbaarheii van het tro—amma 

Een beperkte testversie met alleen Pearsons X2 is mcmenteel beschikbaar on ie 
aoademische rekencsntra in Amsterdam, Ironingec, Leiden en Itrecht. Zen versie net 

de zes bovengenoemde toetsen komt binnenkort, "gersed. Leze wordt tegen vercendkosten 

ge_evera door net lentrun voor lata-Analyse, Tarkennarkt 2, Itrecht tel L3C E23F'' 
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INTRODUCTION 

FISHER is a program to compute the distributions and/or descriptive levels 

of significance (p-values)of statistics used for testing independence or 

homogeneity in an rxc contingency table with fixed marginal totals. 

The 'exact' distributions of the test statistics themselves are discrete, 

and difficult to treat analytically. So usually their continuous limit 

distributions are employed to obtain an approximation to the descriptive 

levels of significance. Until the advent of very fast computers and efficient 

algorithms the computational task to obtain the exact distributions of the test 

statistics themselves was prohibitive. In addition, no convenient way is 

available to tabulate them due to the large number of parameters, and the 

erratic behaviour of the descriptive levels of significance caused by the 

discreteness of the distributions. The asymptotic distributions have the 

advantage of easy tabulation and fast computation, but in cases where the 

number of observations (or more precisely the expectations) are small asymptotic 

methods are not accurate enough. However, not too much is known about what iS 

meant by 'small1. 
Cothran (1352, 1364) gave the following widely applied rule of thumb for 

the use of Pearson's X2 in cables with more than one degree or rreeoom: if all 

exceeded frequencies are larger chan 1, and at ;easc 30" Of "hem are larger than 

5, the C critical region of 5 percent (1 percent) will really be at least 3 and 

at most 7 percent (.5 and' 1.5 percent). For other statistics such general rules 

of thumb are not available. 
For more than one degree of freedom exact calculation can be very much 

more expensive than the calculation of the asymptotic approximation; its cost 

still may be prohibitive. Moreover the asymptotic approximations prove adequate 

in many cases with remarkably small samples. Therefore one should not turn to 

exact calculation automatically. Through the program the necessity and the cost 

of exact calculations can be judged in advance, or interactively. 

The exact tests used here are permutation tests and are a direct generali¬ 

zation of Fisher's exact test for the 2x2 table (which is also efficiently handled 

by this program). Put another way: tests are conditional on the observed marginals 

with the hypergeometric distribution as null hypothesis. 

The alternative hypothesis should determine which test statistic is most 

appropriate. In addition to the usually employed X2 for the most general alternative 

hypothesis the following exact tests are available for more specialized alternatives: 
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Kruskal-Wallis' one-way analysis of variance, the correlation ratio, Kendall's 

xb, Spearman's rank correlation coefficient, and Pearson's ordinary correlation 

coefficient. 

A number of algorithms and some programs to perform the calculations 

necessary for computeng the exact significance levels have been published: 

Boulton & Wallace (1973), 3aker(1977), Agresti & Wackerly (1977), Klotz & Teng 

(1977), and Hancock (1975), IMSL Version 8, subroutine CTP9 (1980). 

ihe basic algorithm of the present program evolved form Agresti 4 Wackerly's 

implementation of BouUon & Wallace's algorithm. It has, however, a number of 

features which distinguishes it from its predecessors : 

1. it is more efficient and faster than any of the previous programs; 

2. it can be used for up to 12 x 12 tables with marginal totals up to 200 

- be it that in combination one might compute forever 

3. it can compute exact and approximate significance levels for six different 

statistics; 

4. it also orints tables of exoected values and residuals; 

5. it can be used interactively; 

5. it contains comolete inout checking, and performs also a number of internal 

consistency checks; 

7. if is written in transportable ANSI-FORTRAN IV, chekcsd oy PFORT (Ryder, ,1974 

3. wr-tten is a structured way, so as to ensure efficient compiling, easy 

modification or addition of statistics, and source legibility. 

By giving descriptions at increasing levels of detail, we hope to ease the 

problem of checking, correctness for others as well as for ourselves. 

A. User's Guide 

global description, definition of statistics, outline of statistical theory, 

input and output specifications, examples of input and output. 

B. Programmer's guide 

detailed description, including rewritten definitions and calculations in a 

form that is better suited for computation, flowcharts. 
C. Program Listing 

comments in source text 

D. FORTRAN source text itself 

In this way it is possible to check one level by comparing it with the next 

coarser level which involves only a small step, and which makes it more easy to 
check correctness. 
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GLOBAL DESCRIPTION 

The main problem for computing the exact significance level of the test 

statistics is that, given the marginal totals of the observed contingency table, 

one needs to generate all possible tables with the same marginals in order to 

obtain the distributions of the test statistics. The table of observed frequencies 

from which we derive the fixed marginals will be called 'the 

observed table' . It must be clearly distinguished from the tables composing the 

set of all possible tables with the same marginals, which we will call the 'homo¬ 

marginal family1. Each element of this family will be called a 'member' or 

‘possible table' . 
In principle we must do the following to obtain the exact level of significance 

, p of the statistic S: 

- set p=0; compute the observed value of S: obsS' 

- generate all members of the homo-marginal “amily, and for each member: 

- compute the probability, pcur-ent; 

- compute for the value of the test statistic S, Scurrent; 

- comoare tne value of she statistic with that of the observed table and 

accumulate the probabilities of the more extreme members: 

IF Scurrent > obsS "HEN o = o J- pcurrent 

- print o. 

From an algorithmic point of view the interesting part of the program is 

the subroutine generating all members of the homo-marginal family. This can be 

done in some 200 lines (as has also been done in IMSL). An elegant recursive 

algorithm is given by Boulton & Wallace (1973), but we implemented a faster 

method based on the simulation of a dynamic number -viz (r-l)x(c-l)- of nested 

DO loops. The largest part of the program (in total over 4000 lines) deals 

with I/O. The computer time needed to compute exact significances is roughly 

proportional to the size of the homo-marginal family. There is no simple, 

explicit formula for this family size, but several approximations are available. 

FISHER computes the approximatimation ingeniously derived by Gail & Mantel (1977). 

It usually seems to be off by far less than a factor two, which is sufficiently 

precise for our purpose. 
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NOTATION and TRMINOLQGY 

The random variable that we observe is 

T = (T.j), i = l,...,r; j = 

where T^. is the frequency or count in the i-j-ceVl of an rxc classification. The 

observed values will be denoted by t and t—. Summation over the first or second 

index will be indicated the by a the observed marginal totals are 

t}+>t2+’ • • • >,:r+ and t+l’t+a’•••,t+c’ while N (-t++) is the total numoer of 
observations. As in the present program we only treat rxc tables.with fixed 

marginal totals, and r > 2 and c > 2, the degrees of freedom of such tables will 

be (r-l)x(c-t) if no marginal is zero, "inally the variable giving rise to the 

row classification or 'row variable' will be denoted by X, and the 'column 

variable' by Y. If, say X, has been measured on an ordinal scale, the 'values' 

of X for each row will be the midranks of the observations of that row. The 

midrank RX^ is the average of the ranks of the observations in that row, i.e. 

table 
row 

marginal 
row 
ranks 

midranks 
of X 

tll t12‘"tl! 

f- t t 
'21 22" 2c '2+ 

t, +1 
1 + ? -f 

RXl = (i+t1+)/2 

RX2 = t1+<lrt,+)/2 

'nr example 
-ow 

table marginal row ranks midranxs 

2 3 16 

14 0 5 

3 7 1 U 

1,2,3,4,5,6 • 

7,3,9,10,11 

RXX = 3j 

RX2 = 9 

RYj = 2, RY2 = 7, RY3 = 11 

Recall that Kendall's tau only depends on the order of rows and columns. The 

midranks are used in Kruskal-Wal 1 is and Spearman, and are computed by the 

program. The values of X and Y in the interval variable cases (correlation ratio 

and correlation coefficient) of course have to be supplied by the user (default 

values 1,2,3,... may be obtained by entering all zeros or blanks). These values 

are denoted by X^ for the i^ row and Yj for the column. In order to avoid 

confusion, the values must be strictly increasing: 

X, < X, < ... < X , and 12 r 

Yi<Y2<... <Yc . 

Note that Kruskal-Wal1 is coincides with the correlation ratio if X. = RX., and 
i i 

that Spearman coincides with the correlation coefficient if X^ RX. and Y. = RY. 
i J J 

(cf. def)-So generally it seems useful to compare Kruskal-Wal1 is with the 

correlation ratio and to compare Kendall's tau, Spearman's rank correlation and 

the ordinary correlation coefficient. 
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DISTRIBUTION of the POSSIBLE TABLES 

FISHER handles contingency tables with fixed marginal totals. This limits 

its use to those problems for which the marginal totals are fixed by design or 

for which conditioning on the marginal totals is appropriate. This is however 

not at all a serious limitation (see e.g. Kempthorne (1979), Verbeek & 

Kroonenberg (1980),and their references). 

In accordance.with the fixed marginal totals we assume that the 

distribution of f (= the frequencies of the observed table) under the null 

hypothesis is the (generalized) hypergeometric one 
c r 
H t ' H t. ' 

i-i TJ i-i 1+ 1 
Pr(T=t) = —i--=- = (constant) x - . 

r c t , i 

For details and derivations see, for instance, Mood, Graybill & Boes (1974, 

section 5.4). 

TEST STATISTICS 

The exact siqnificance levels will be computed nor she rollowing test 

statistics, which are expressed here by the definition formulas rather than by the 

computational ones. We will -efer the reader for details to two easily acces’ble 

textbooks rather than to the original references, in oracxets i J, we give the 

mnemonic used in the output.. (Compare Dixon 4 Brown (1977) p 778, and 

Norusis (1979) p 12). 

• Pearson's X2 [X2] - generally called.the 'chi-square' statistic - 2 

^ (observed-expected)2 _ v ^i,j 
expected -"j 

2 

all 
cel 1 s 

t. t ./N 
1+ +J 

References: Hays (1973, sections 17.4-17.7, 17.9, 17.10); 

Siegel (1956, pp. 104-111, 175-179). 

ScyS^l;y3lli!--2Q§-y5¥-§!!§l¥§i5-2f-!(5Ci2D£t-£ [K'.w3 
(grouped by the column variable Y) _ ? 

2{S T.^ (RXi-RX,)‘} 
between sum of squares for midranks _. j j ^_ 
total sum of squares for midranks Z t. (RX . -RX)2 

where the RX^ are midranks, RXj = average midrank of the j column = 

ST. .X./t ., RX = overall average midrank =St. RX ./N. 
j U i +j’ 1 2 
The form given here is such that it is comparable to n : if = RX^ the two 

are equal . 

References: Hays (1973, section 18.9); 

Siegel (1956, oo. 184-193). 



Correlation_ratig_n_ [ETA2], or one-way analysis of variance 

(grouped by the column variable V) _ o 

} 
2 _ between sum of squares for scores _ i j_ 

^ = total sum of squares for scores v j. ^^ 

. i 1+ 1 

where X. = value (or score) for the ith category of X, and X^ = average value 

of X in the jth column = S.T.^.X^t^, I = overall average. value of X = St^X^/N. 

Reference: Hays (1973, section 16.6). 

Kendall's [TAU 3] 

number of concordant pairs of obs - number of discordant .pairs of obs 

/number of pairs, not tied on X1 /number of pairs, not tied on Y 

S ( £ ( £ T. .)T., - £ ( £ 
i ,j i<i ,j<j J i ,j i<i .j>j 

Tij)Ti'j' 

/j N( N-l) -£ jti+(ti + -l)' /jN(N-l)-£ >t+J.(t+j-l) ' 

Here a 'pair (of obs)' is one of the |N(N'-1) unordered pairs of observations {(X,Y) 

References: Hays (1973, sections 13.13-18.15) 

Siege! (1956, pp. 213-223) 

Kendall (1948, 1975, section 3.4) 

(X1 ,Y‘ 

Spearman's ranK correlation coefficient r. [RSI 

,v £. . T. .(RX.-RI)(RY.-5Y) 
covariance (X,Y) _ ij ijv 1 'v j '_ 

rs st.dev. (X) st.dev.(Yj /j t. (RX.-IS')^/^ t .(RY.-W)^ 
i i+ i j +J J 

where the values of X and Y are midranks, as with Kruskal-Wal1 is. 

References: Hays (1973, sections 18.12, 18.14) 

Siegel (1956, pp. 202-213) 

?§5nS2G!§.S2!(£®l§tion_cgefficient_r IR] 

£ T..(X.-X)(Y,-Y) 
covariance (X,Y) _ i ,j 1J 1 J 

r - st.dev.(X) st.dev.(Y) " /y t (-X-.-.j()^/£ t .(Y.-Y)^ 
i i+i i ; j +ji J ' 

where the values of "X and Y are the values (or scores) of the row and column 

variable respective!''. If X- = RX. and Y< = RY. then r'= r.. 
1 1 j j s 

References: Hays (1973, chapter 15) 

Kendall & Stuart (1973, vol . II section 31.19 The permutation 

distribution of r) -.~ 
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The choice of a test statistic depends on the type of alternative hypothesis 

one has in mind. Display 1 gives an overview of the relation between the 

statistics available in the program and the corresponding alternative hypothesis. 

One can, of course, always use a statistic with a more general alternative 

hypothesis, but this will result in a loss of power. 

DISPLAY 1 

Alternative hypothesis 

1. general 

2. row variable ordered; 
columns are groups; 
one-way anova 

both variables are 
ordered 

Statistic 

X2 

< 

b 

rS 

Mnemonic 

X2 

K-W 

ETA2 

TAU 3-| 

RS ‘ 

R 

Comment 

if values of row variable are 
(mid)ranks; e.g. the row 
variable is ordinal. 

if values of row variable are 
scores 

if values of both variables are 
(mid)ranks; e.g. both variables 
are ordinal 

if values of both variables are 
scores and the alternative 
assumes linear depenoency 

■ASYMPTOTIC APOROXIMATIONS 

If the expected values are not too small, then asymptotic limit distributions 

can be used to approximate the exact distributions of the statistics with 

sufficient accuracy. How large 'small' is, is still a matter of investigation. 

Some papers with results for X2 are Agresti S. Wackerly (1977), Larntz (1978), and 

Kroonenberg A Verbeek (1930). Klotz A Teng (1977) present some results for 

Xruskal A Wallis' K. 

In Display 2 we present the asymptotic limit distributions used in FISHER. 

Some of the statistics have to be transformed before the approximating distribution 

can be used. 

DISPLAY 2 

Statistic Mnemonic Transformation 

K 

n2 

Tb 

r s 

r 

X? 

K-W (N-l)K 

ETA2 (N-l)n2 

TAU 8 Tb/st.dev.(Tb) 

RS rsv1v7?/(l-r2) 

R r/fPI/(l-r2) 

Limit 
distribution 

Degrees 
of 

freedom 

(r-l)(c-l) 

c-1 

normal 

T-student's t N-2 
i.e. standard 

j normal, as N->oo 

References 

Cf. Mood et al (1974) 

Lehmann(1975)pag 396 ex 31 

Kendall(1975) sections5.6 
A 4.9 

KendallAStuartf1973) 
section 31.19 The per¬ 
mutation distribution 

of r 



ONE and TWO-SIDED TESTS 

Tests of independence based on Tb, r^, or r , and also tests in a 

2x2-table can be against a two-sided alternative or against a one-sided alternative. 

Let us call the test statistic S. 

For a one-sided alternative there is little disagreement about the definition 

of significance (but cf. the last paragraph in the section on the probability jump)'. 

For a right-sided alternative significance = Pr(S ^ obsS), and 

for a left-sided alternative significance = Pr(S £ obsS). 

Note that these probabilities add up to 

1 + Pr(S = obsS). 

As explained in the section on the probability jump, Pr(S = obsS) is hard to 

determine for r. In that case the significances'produced by FISHER add up to 

1 + JUMP. 

For two-sided alternatives there are various methods to distribute the critical 

region over both tails. For example: 

- A. Equally sized tails: take a left tail critical region of size */2 (under H^j 

and takea right tail of .the same size. However, due to the discreteness this 

usually can only be done approximately. Then one creates a (discrete) nested 

family of critical regions, and the significance of an observation is defined 

as the size of the smallest critical region containing she ooservation. Due 

to the discreteness this significance can be substantially less than twice 

■ the one-sided significance (cf the Examole below). 
2 

- 3. Take S as test statistic: make critical regions of the form "S<-c or $>C. A 
2 ~ — 

problem with this approach is that e.g. X and -2 In LS are equivalent as 

one-sided test statistics in a 2x2-table, but not as two-sided test statistics: 

they may interlace both tails differently, as in the Example below. 

- C. Choose the critical values c^ and c^ in such a way that the critical region 

"S^c^ or S>cR" is unbiassed or at least locally unbiassed. For discrete 

distributions this usually requires randomization,.but it is rather obvious 

how to define "nearest" non-randomized tests. 

We have (not yet) given serious thought about the implementation of two-sided 

significances for the statistics mentioned above. As yet the program simply only 

produces the left-sided and the right-sided significances. 

Examole. Suppose we observe the following 2x2-table. 

A 

5-A 

"T" 

5-A 

16+A 

21 

5 

21 

Ye 

A -2 In LR 
0 2.4 
1 .0 

2 1.5 
3 5.5 
4 12.4 
5 25.5 

X2 
1.5 

.0 
1.7 
6.6 

14-7 
26.0 

Pr(A=a) 
• 309 

-.455 
.202 
.032 
.0016 
.000015 

This table has a distribution virtually without left tail. So left-sided or "really" 

two-sided testing is impossible. Also note that -2 In LR and X2 order A=0 and A=2 

differently; according to -2 In LR the significance of A=2 is .545, according.to X2 
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the significance is .236 . 

RESIDUALS 

In most cases significance testing should not be the end-point of an 

analysis, but only a 'matter of hygiene', i.e. performed without much ado. 

If dependency is found then one should look at residuals. These residuals 

are defined as 

residual = observed - expected. 

Examining the residuals is essential for building or refining any model. 

In FISHER two types of residuals have been included: 

standardized residual = 
. , , t. .-t. t ./N 

residual _ ij n- +j 

/expected /t^t^/li' 

residual 
estimated st.dev. 

VWN 
(l-ti+/N)(l-t+;j/N)/N‘ 

In the output of the orogram the square of the standardized residual is 
2 

printed, as this is the contribution of a cell to Pearson's X . 

Note that the standardized residual of a cell will always be smaller than 

the adjusted residual. The difference will be negligible when t^.-ZM and t^/N 

are small. The adjusted residuals nave the advantage that they nave asymptotically 

standard normal distributions. 

References: Everitt { 1977, section 3.4.3) and Habemian(1973). 

PRO BAB I LTV JUMP 
2 

A peculiar problem with real valued, discrete statistics, like X , is the 

following. Two different members of a homo-marginal family (= the coUection 

of all tables with the same marginals) may have the same value of X , e.g. the 

tables are equal up to a permutation of rows or columns. However, due to a 

different order of the calculation,rounding effects may lead to two slightly 
2 

different values. Therefore, when two members with nearly the same X values 

occur, it is almost impossible to say which of the two values 'really is larger. 

This makes it very hard to determine the significance Pr(X >X observed) 
2 2 

and the size of the 'jump' Pr(X = X observed ) 

distribution function at X'bbserved. 

in the exact, discrete 

»)This refreshing comparison is borrowed from Ehrenberg (1975) page 323. 
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In FISHER we determine 
2 2 

significance = Pr(X > X (observed) - .0005)*, and 

jump = Pr(X2observed - .0005 < X2 < X2observed + .0005)*. 

2 
The implicit assumption is that two X values are likely to be equal if their 

absolute difference is smaller than .0005. If in reality the two values are 

different, then the significance indicated is too large (i.e. too insignificant), 

but at most the size of the jump. If a borderline case with a large jump occurs 

- and an extensive analysis is justified - one should, (and can) print the entire 
o o 

distribution to check the members with an X close to X observed . . However, 

discriminating between 'X^observed' and 'X^observed - .0005' almost invariably 

presupposes a precision not available in the data. 
2 ? 

The cited peculiarity affectsX , Kruskal-Wal1 is K, n , and r, but not 
.. . _ _ . . ... _ O’ 

r5» tests in the 2x2-tdble, as these-can be done by integer arithmetic, (see 

the Programmers Guide for details). 
Two other possible approaches to the 'jump problem' are: 

- A. Ignore the problem altogether. 

- B. Don't mention it to the user, but do suotract some small c > 0 from the 

observed value(s). This guarantees that the significance reported is not 

too small (i.e. not exaggerated). 

Admittedly these aooroaches are more user fri-enciy (in the sense tnat they arouse 

less discomfort), ana often they are guice sufficient. ~ne main problems are: one 

cannot tell whether they are sufficiently precise, ana the computed significances 

are more machine dependent than just the last few bits. However, different results 

produced by different machines do not differ more than the jump (and actually less 

-but it is hard to give an efficient algorithm for a better upperbound). 

On the whole we feel, that if one is careful enough to compute the exact 

distribution rather than its asymptotic approximation, then one should also 

pay tribute to the inherent discreteness of the exact distribution by glancing 

at the jump. However, we would be pleased to hear different opinions or other 

suggestions. 

Another view relevant to the jump (or rather to Pr(S = obsS)) is the 

following. Some have argued that it is more reasonable to define significance 

as Pr(S > obsS) + c*Pr(S = obsS), with c=$, 

than with c=l.(as usually done). After all,refining the order induced by S, by 

randomly ordering ("breaking") S's ties, approximately and on average gives 

_this_decrease jn significance "for free". 

2 2 
*Here X and X (observed) ± .0005 should be interpreted as their rounded 

machine representations. The FORTRAN text contains expressions like: 

IF(X2.GE.(X20BS-.0005))... 
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DESIGN GOALS of the PROGRAM 

FISHER is written in transportable ANSI-FORTRAN with special care for the 

following aspects: 

- effiency and speed; 
- legibility; it is relatively easy to modify for special purposes (e.g. high 

spaed theoretical simulations; relaxing restrictions; including other statistics) 

- user friendliness of input 

• it has both a batch and on interactive mode 

• it is largely self-explaining, it can produce both information about the program 

and an input summary either upon request or automatically in case of input errors. 

• it checks all input parameters 
• the input format has been designed to allow extensive checking of the input data 

• cooperative error handling 

- user friendliness of output 

• care has been taken to include the information necessary to analyse two- 

dimensional tables: two kinds of residuals, expected values, observed values 

of the test statistics, their approximate significances, and the exact ones, 

the hypergeometric probability of the observed table, and the jump; 

• various parts of the output can be written in condensed or extended form to 

user specified files for further inspection and analysis’, 

• in default mode the program does not embark on - possibly time consuming and 

unnecessary - exact calculations, but it does provide both the asymptotic 

approximations to the significance(s), and information about the necessity 

and the cost of exact calculations; viz. the table of expected values and an 

estimate (or exact calculation) of the number of tables with the same 

marginals. 

OUTPUT EXAMPLES 

The next pages contain some annotated examples of output from FISHER. 

All alphabetic input is in lower case; moreover all inout is encircled. At this 

point, the User Guide has discussed all input parameters for FISHER. In this 

paper we skip this discussion, hoping that the most important parameters are 

self-evident from the examples given. 
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lIL \o > s. roUJ- 

COMMAND- 
COMMAND- 

^onnect, inputTou^uTS*^— r °^-r 
[fisher ^ ^ se.ssvor. 

Lu»-i^e O^A- P'SWER. 

C-’D^l- C-45m pi *.4€.r -C>f- 

X X2 FISHER R*C EXACT TESTS 
X C(1980) AV/PMK 

X X TEST VERSION CDC-0.78SP. 
TODAY IS 04/03/81 09.53 

4 

TASKyielp 

"■fc^ tc" 
V 4. -to r lc 

€. t - 

- t:W*_ 

-Uv^- i, r\ eft.<z_ 

O-n ti_U^ ^ \ J, vi 

ej~\r\*y, " T \ T L_ 
r -r r a^_ -V-^, 

oJ^ 

ar\jZ. 

S-M* 
i 

INFO GIVES INFORMATION ABOUT THE PROGRAM 
HELP GIVES THIS SYNTAX OF HELP- 
HELP, A GIVES ALL SECTIONS OF THE INPUT SUMMARY 
HELP,F GIVES INFORMATION ON THE INPUT FORMATS 
HELP,I GIVES AN EXPLANATION FOR IN0PT- (“INPUT OPTION) 
HELP,0 GIVES AN EXPLANATION FOR OUTOPT (“OUTPUT OPTION) 
HELP,S GIVES AN EXPLANATION FOR ISTAT (“STATISTICS) 
HELP,T GIVES AN EXPLANATION FOR THRESH (“THRESHOLD) 

i f o r,w a-'t <ar\ 

trcJoLa. tW-cs 

iofcs. 

(vex 

W-ertAar, 
U£LP x\ 

2_ TASKr^elp.J, 

OUTOPT (“OUTPUT OPTION) SPECIFIES WHICH SELECTION OF A-E BELOW IS REQUESTED: 

POSSIBLE OUTPUT : (A) INPUT TABLE, 
OBSERVED VALUES OF THE 5TATISTIC(S), 
APPROXIMATE SIGNIFICANCES, 
APPROXIMATE OR EXACT NUMBER OF TABLES WITH THE SAME 

OUTOPT “ 0 
I 
2' 

3 
4 

MARGINALS, 
AND (IF AVAILABLE) THE SUM OF THEIR PROBABILITIES (- I.), 
AND THE HYPERGEOMETRIC PROBABILITY OF THE OBSERVED TABLE. 

(B) TABLES OF EXPECTED VALUES AND OF RESIDUALS. 
(C) (FAST) CALCULATION OF THE NUMBER OF TABLES WITH THE SAME 

MARGINALS. 
(D) EXACT SIGINIFICANCE(S). 
(E) WRITE WHOLE DISTRIBUTION ON UNIT I. 

AB 
ABC OUTOPT “ -1 AC 
AB D -2 AD 
ABCD -3 A CD 
ABODE -4 A ODE 
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VrASK^ltlleverittag??) p ^ placebo versus drug 3^., 

Ict^word «-A ev-Vv^J»i **“ taW^~ 

FISHER C(1980) AV/PMK TEST VERSION CDC-0.78SP. 04/03/81 09.56 

ANALYSIS NUMBER 1 
EVERITT(197 7) P 46 PLACEBO VERSUS DRUG 5 )( 

NR NC INOPT 0UT0PT ISTAT THRESH (512,F4.2) 

2 l-"~ 
(IN0PT= 1.0UTOPT=-3.ISTAT= 0.) ( THRESH IS INACTIVE.) 

N OF ROWS = 2 
N OF COLUMNS 

w*' ru2_ >^3. Or*> • £2 s 4U wrv p A 

e,£,Wo -t- O . 
C ^ P u.-V ^ ^o- /vot-X-er^ 

INPUT 
ROW 1 
ROW 2 

CELL FREQUENCIES ONLY. 

3 15 
22 I5_ 

tW i.xp^UA Cc^,A u 
.(w -t= FORTRAN, 4.W., 

iA ■bo 4o 

INPUT TABLE + MARGINS: 

8 15 : 23 
22 15 : 37 

30 30 : 60 

OBSERVED X SQUARED = 3.45 WITH I DEGREE(S) OF FREEDOM. 

***X7>CX5‘C**>C**X****ycXl'crtjit7lf**XXl«5>!*X*7it*XX*****XX****7it*X*******X»t***************X**** 

I DEGREE OF FREEDOM. 
LEFT TAIL SIGNIFICANCE = .0551 
RIGHT TAIL SIGNIFICANCE = .9837 

s= fr (WU- -*.??>■«■ 
^ Pr C .. 

^ 5 

s > 

\ o-sS’P i^Pr ( -S4 8 ^ 

************************************************************************x****** 

HYPERGEOMETRIC PROBABILITY OF THE OBSERVED TABLE = .0388 « P--(U<^ ternaj- o .It =3^ 

.1 
NUMBER OF TABLES WITH THE GIVEN MARGINS = 24 . So'. S1. is-'. .rUx'. 

EXECUTION. TIME FOR THIS ANALYSIS : .05 SEC. 

TASK:(fltl voorbeeld met aieerdan 1 vrljheidsgraaT') 

FISHER C(1980) AV/PMK TEST VERSION CDC-0.78SP. 04/03/81 09.56 

ANALYSIS NUMBER 2 
VOORBEELD MET MEERDAN 1 VRIJHEID SGRAAD 



NR NC INOPT OUTOPT ISTAT THRESH (5I2.F4.2) : 

COZED 
(INOPT* 1.OUTOPT* 4.ISTAT* 0.) ( THRESH IS INACTIVE.) 

N OF ROWS * 2 \ 

N OF COLUMNS* 3 -b 

INPUT 

ROW I 

ROW 2 

CELL FREQUENCIES ONLY. 

1 

2 (TTp 

= Lf 

- O : X2" on Vh^ 

INPUT TABLE + MARGINS: 

0 I 5:6 

3 2 1:6 

3 3 6 : 12 

THE DISTRIBUTION WILL BE WRITTEN ON UNIT 1 (BECAUSE OUTOPT *4 OR -4). 

EXPECTED VALUES + MARGINS : 

(SMALL EXPECTED FREQUENCIES (< 5.0) ARE FLAGGED BY A $ ) 

1.5// 1.5// 3.0//: 6 

1.5# 1.5// 3.0//: 6 

3 3 6 : 12 

RESIDUALS: 

-1ST ENTRY: ADJUSTED RESIDUALS * (OBS-EXP) / ESTIMATED ST. 

/ (LARGE ABSOLUTE RESIDUALS (> 3.0) .ARE FLAGGED 
2ND ENTRY: X2 TERMS - (CBS-EX?;**2 / EXP 

-2.0 
1.5 

DEV. 

5Y A # 

2.0 
1.5 

) 

EXACT SIGNIFICANCE .1234 

OBSERVED X SQUARED = 6.00 WITH 2 DEGREE(S) OF FREEDOM. 

SIGNIFICANCE ACCORDING TO CHI2 APPROXIMATION .050 
**************************************************** 

) - .5 cc rrt 

A'-tL 

PROBABILITY JUMP » .1212^-L^r^! (\y ^ Uv^b-^ v *£ r-cw^ ^<4 
********************************************************* **************w*AA^Aii(^ ^ 

HYPERGEOMETRIC PROBABILITY OF THE OBSERVED TABLE * .0195 U bo -tCrjZ. X 

F"rj» ^ \ we, LtaJ"* 

NUMBER OF TABLES WITH THE GIVEN MARGINS =■ 16 . bW*.b bU^_ A.4 br .U^ion 

SUM PROBABLITY OF ALL TABLES -1.00000000000012 /WHICH SHOULD BE 1. EXCEPT 
FOR ROUNDING ERRORS. ^ ;* ’ ; 

X p V; cm. **» \4. 

EXECUTION TIME FOR THIS ANALYSIS : .10 SEC. .10 SEC. 

ll. . o o *_ . oo 2. 
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Q no > •t-'H'' _ 

S TASK:(Saxvell(197 7) table L0.3T^ 
M SEARCHING FOR A TASK CARD, THE.FOLLOWING NON-TASK 

CARD(S) WERE FOUND, AND IGNORED: 
MAXWELLC1977) TABLE 10.3 

6 TASK:^Ttl maxwell(1977) cable 1Q.~3^ 

FISHER C(1980) AV/PMK TEST VERSION CDC-0.78SP. 04/03/81 09.56‘ 

ANALYSIS NUMBER 3 
MAXWELLC1977) TABLE 10.3 

NR NC TNOPT OUTOPT/ISTAT THRESH 
<"5 5 1 0' 1 ■ 5-fe^-V = ■ 

(INOPT= I.OCTOPT- 0.1 STAT= 1.) 
N OF ROWS = 5 
N OF COLUMNS* 5 
INPUT 
ROW 1 
ROW 2 
ROW 3 
ROW 4 
ROW 5 

r.F.I.I. FREQUENCIES ONLY. 

.-■fcp'Lt opto" 

(512,F4.2) | 
o-tt, ($ 5 

( THRESH IS INACTIVE.) 

p o pw»_ 1 £> -y. f> •«-'C * 

5v_ p-s^C-U. a-trls'k , <2-0. cW Ca. 

two S" /-V t ^ Lz- 

X =. " 

i (_a-«L-rj *i s ) — 

tv 
orv 

INPUT TABLE - MARGINS: 

3 2 5 
11 3 16 
28 13 23 
27 11 23 
63 10 9 

132 44 76 

10 
35 
33 
12 

4 

94 

11 : 31 
19 : 39 

6 : 103 
5 : 78 
0 : 86 

41 : 387 

ROW NUMBER 
VALUES (ETA2 & R) 
MIDRANKS (K-W S RS) 
COLUMN NUMBER 
VALUES ( R) 
MIDRANKS (RS) 

1 2 
1.00 2.00 

16.0 76.0 
1 2 

1.00 2.00 
66.5 154.5 

3 4 
3.00 4.00 

172.0 262.5 
3 4 

3.00 4.00 
214.5 299.5 

5 
5.00 

344.5 
5 

5.00 
367.0 

«-5 

EXPECTED VALUES + MARGINS : 
(SMALL EXPECTED FREQUENCIES (< 5.0) ARE FLAGGED BY A */ ) 

10.6 3.5tf 
30.4 10.1 
35.1 11.7 
26.6 8.9 
29.3 9.8 

132 44 

6.1 7.5 
17.5 21.6 
20.2 25.0 
15.3 18.9 
16.9 20.9 

76 94 

3.3//: 31 
9.4 : 89 

10.9 : 103 
8.3 : 78 
9.1: 86 

41 : 387 

^ Oe-tar-ci. nrv*. 

^ ^ pro x . /~v 1 o n 

cxlio w£ 

Vo -l-W, 
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RESIDUALS: 
1ST ENTRY: ADJUSTED RESIDUALS - (OBS-EXP) / ESTIMATED ST. DEV. 

(LARGE ABSOLUTE RESIDUALS (> 3.0) ARE FLAGGED BY A </ ) 

2ND ENTRY: X2 TERMS - (0BS-EXP)**2 / EXP 

<A.*A A 

— Lcu~<^_ un 

_ pos.'b* 

o-f 

<ie 

l -s-Lr. 

■v *-< 

c.o r~cuz.rs. 

.L^n g O A^_ 

Vv/i-VW rr\ *s\ ^ 

^ s M. C.W a*. CA-Tvvcs^ s ^ 

pe-rv 

oVa'^UZ.r- 

^ o «A<»p-*/'<=L€J> 

^ k>-V: ^ 

■t./'>»/* Vj4. S "to 

£. xrtr2-<vvi- •;» * A.i\I-r 
. P ’ _l_. 

rtOn -\A.^‘CSf'rr> «- w‘ . 

•4- 

****X*1»* ******* ************** ***■*****■********’'»'*******’' ************************** 

TYPE OF 
ALTERNATIVE 
HYPOTHESIS Hi 

STATISTIC 

OBSERVED 
VALUE 

APPROXIMATION 

APPROXIMATE 
SIGNIFICANCE 
RGHT-SIDED HI 
LEFT-SIDED HI 

GENERAL 

5EARSON'S 
:c 

CHI2 WITH 
16 DF. 

.000 

ROW VARIABLE ORDERED 

ONE WAY ANOVA 
COLUMNS ARE GROUPS 

KRUSKAi.- 
W ALL15 

.28 

CORR RATIO 

.23 

CHI2/(N-l) WITH 
4 DF. 

.000 

BOTH VARIABLES .ARE ORDERED 

HI IS A ONE-SIDED HYPOTHESIS 

KENDALL'S 
7AU 3 

1.000 
0.000 

SPEARMAN'5 

RS 

-.33 

PEARSON' 
R 

T DISTRIBUTION FOR * 
R*SQRT((N-2)/(1-R*R))* 
WITH 385 DF. * 

1.000 
.000 

1.000 
.000 

******************************************************************************** 

HYPERGEOMETRIC PROBABILITY OF THE OBSERVED TABLE .0000 

GAIL-MANTEL ESTIMATE OF THE NUMBER OF TABLES WITH THE SAME MARGINALS********* 
ov/a_r-T 1_<3 w j 

EXECUTION TIKE FOR THIS ANALYSIS : .14 SEC. 

(Tend of input file reached. 
NUMBER OF ANALYSES: 3 . 
EXECUTION TIME : .32 SEC. 

STOP 
050500 MAXIMUM EXECUTION FL. 

.331 CP SECONDS EXECUTION TIME. 

GfUL-MRNTEL ESTIffftTE CF THE HUMgEP DF 

TABLES WITH THE SAME MRRijlhhLS . 127E+23 

I/. =tKer -fc» 

12. x a. Jcr ^+_L<z^ , wk , oU act -tK^ C^[>-f_r 

wotdA ffe a w. • r«- ^ o j o OCo Ooo ooo CPx^-e ixj-^ _ 

M o re o ve.r ''«>'< >+* aJr\av«, ^ aic^^^yuxVe 
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Finally, an example showing what happens to a user unfamiliar to 
the input expected by FISHER: the program is self-documenting. 

COMMAND- fisher 

X X2 FISHER R*C EXACT TESTS 

X 0(1980) AV/PMK 

X X TEST .VERSION CDC-0.78SP. 

TODAY IS 04/03/81 10.04 

8° ease input, omdat de programmegebruiker fisher nog niet kent 

PROGRAM INFORMATION 

A***********************************;********************'***** ***7tr**x *********** 

FISHER 

INTRODUCTION 

THIS PROGRAM IS DESIGNED FOR THE ANALYSIS OF TWO DIMENSIONAL 

CONTINGENCY TA3LES. ITS NAME IS DERIVED FROM ITS COMPUTATION OF THE 

"EXACT" SIGNIFICANCE OF PEARSON'S X-SQUARED*X2 FOR AN R*C CONTINGENCY 

'here follows a synoosis of the User Guice, including she Input Summary. 

COMPARISON with SHOP, IMSl and SPSS' 

The 3M0P program for measures of association, BMDPIF, gives significances 
2 

only for X . For other statistics they provide the following information: 

- The "t-value", which is asymptotically t-distributed under HQ. So this can 

easily be used for one-or two-sided testing; two-sided tests are equal tails 
tests. 

- An estimate of the asymptotic standard error under Hq (which is used as 

denominator for the t-value). 

- An estimate of the asymptotic standard error under the alternative Hj. This 

is convenient for constructing approximate confidence intervals. 

Moreover BMDPIF reports the minimal expected value in the table, as a signal 

warning for a possible breakdown of asymptotic methods. It can also generate 

tables of expected values and of various types of residuals. Finally, for 
2x2-tables always the exact, hypergeometric probabilities are used. 
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IMSL version 8 has a new subroutine CTPR, which is claimed to produce 

"exact significance tests in rxc-contingency tables". However it is not stated 

what test statistic is used. The source text reveals that they use the probability 

of the table itself as test statistic. This is all right for 2x2-tables, but the 

generalization to rxc-tables seems to lack any justification beyond a superficial 

intuition that has been critized e.g. by Fisher (1950) and by Gibbons & Pratt 

(1975). We know of three properties in favour of this test: 

- It is admissable. 
2 

- It is asymptotically equivalent to X , -2 In LR etc. 

- The significance can be calculated much easier (i.e. faster) than for any 

other statistic. 

However none of these properties seems very relevant to the small sample 

situation, where one is interested in exact tests. 

The SPSS subprogram CROSSTABS prints a bunch of statistics for rxc-tables. 

Significances are only given for X2, Tb> and tc (and in the CDC version also 

for r). Remarkably n (rather than n2, the correlation ratio) is given, but 

without significance. In the manual by Nie et al. (1975) we could not find 

any reference to the fact that the significances are based on asymptotic methods, 

nor clues whether the significances for Tb, tc, and r are one-sided or two-sided. 

In the SPSS Algorithm Manual by Norusis (1979) one reads on page 16 that the 

t's are tests two-sidedly, while page 18 suggests that for r a one-sided test 

is applied. Checking the output of CDC-SPSS version 8.0 shows that for the 2x2- 

-tables investigated both tests were applied one-sidedly. 

Another curious Mumbo Jumbo in SPSS is the treatment of 2x2-tables. As if 

it had to be done by hand, no exact probabilities are calculated for more than 

20 (twenty) observations. The one-sided tests for the t's and for r are equivalent 

in 2x2-tables, but SPSS bravely computes and prints all slightly different 

asymptotic significances, next to the (two-sided) significances of X with and 

without Yates' correction. This usually leads to three widely different (grouos 

of) significances, with little help for the user how to interpret the differences. 

The unorthodox habit of printing /n2 and /x2/N rather than the squares may 

lead to some confusion in tables with negative t's and r. 

The most recent IBM version of SPSS prints as well the minimal expected 

value in the table, as the number and percentage of cells with an expectation 

less than 5. 
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