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SAMENVATTING: 

Scoringsregels om vast te stellen welke van twee 

partijen meer gelijk krijgt bij verschil in predictie 

in een binair experiment worden gepresenteerd. Eigenschap- 

pen van deze scoringsregels worden gecontroleerd. Vervol- 

gens wordt uiteengezet hoe een methodologie waarin uitspra- 

ken worden opgevat als weddenschapsaanbod zich tot andere 

statistische modellen verhoudt. 
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Imagine that you would want to make a bet on the outcome 

of the next presidential election. Suppose your prediction is 

that Mr. C. will win after all. Much to your dissappointment you 

are unable to trace any creditable persons who disagree with you 

to the point of venturing even a bottle of California wine. 

Should you give up and look for other experiments# natural or 

contrived, to satisfy your need for being put in the right? 

Not necessarily. Under the circumstances, the personal pre¬ 

dictive probability that Mr. C. will win is apparently ^.5 for 

each potential participant, assuming a binary outcome of the ex¬ 

periment. But that does not mean that there is no difference in 

expectation. You should be able to find others who are more, or 

who are less confident that the outcome will be C. In fact, your 

chances of finding someone whose predictive probability is iden¬ 

tical to yours are zero. 

So all you need is a satisfactory rule that tells you how 

much a participant receives from another if, for example, his 

or her probability of C is .7 and the other person's p(C) = .9, 

and if indeed C occurs. 

Once such rule is the quadratic rule: 

in which: 

vA0 = the payment, in arbitrary units, that participant A receives 

from B; 

= A's predictive probability that the actual outcome of the 

binary experiment would not occur. 

The payoff-matrix for the above example is given in Table 1. 

The quadratic rule may be found satisfactory since it meets all 
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Table 1. 

Payoff-matrix for a binary bet under the quadratic scoring rule: 

PA(C) = .7 and PB(C) = .9. 

Outcome 

participant C Not C 

A .l2 - .32 - -.08 .92 - .72 = .32 

B .32 - .l2 = .08 .72 - .92 = -.32 

of the following requirements: 

Hi . Reproducingness. Each participant maximizes its expected 

payoff by submitting a predictive probability which is a veridical 

representation of its subjective beliefs. So the rule forces a ra¬ 

tional participant to say what he or she thinks. In the following, 

it will be assumed that a participant behaves accordingly. 

R2. Positive expected payoff. Although the bet is a zerosum 

game under the quadratic rule, the subjectively expected payoff 

is positive for both participants. 

R3. Symmetry.The subjectively expected payoff is equal for the 

two participants. 

R4. Boundedness. The maximum amount that can be lost or won 

is unity. 

Appendix 1 proves that the quadratic rule is the only rule 

that satisfies all the requirements Rl through R4. Another inter¬ 

esting rule is the logarithmic rule: 

2. 

VAB = 

The payoff-matrix for the el 

The log rule does not satisfy 

ection example is given in Table 

R3 en R4, but it may be found 

Table 2. 

Payof f-matrix for a binary bet under the logaritlimic scoring rule: 

p (C) = .7 and P_(C) = .9 
A B 

Outcome 

participant C Not C 

A 2 log 7/y = -.36 2 log V] = 1.58 

2log V7 =: -36 B 2log ’/j = -1.58 
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useful precisely because the maximum amount that can be lost 

is unbounded. If a participant is subjectively certain (p=l) 

about an event that does not in fact occur, it may be judged 

that no punishment is heavy enough. 

Generalizations of the quadratic and logarithmic rules 

for more than two possible outcomes will be presented else¬ 

where (Hofstee, 1980 )• Since a dependent variable can 

always be dichotomized, the present rules will probably meet 

the most urgent demands on the part of betting addicts. 

In the remainder of this paper, this kind of betting will 

be taken as a methodological paradigm (Hofstee, 1977), to be 

compared with other methodological models. The central characteri¬ 

stics of the betting model are the following: 

(1) It reflects a 'predictivist' conception of empirical 

science, as opposed to an inductivist conception. The criteria 

for an empirical statement are forever located in a future state 

of affairs, and no evidence from the past is able to serve as 

a justification of a prediction. Thus the betting model is in 

line with classical statistics as opposed to bayesian statistics. 

As in classical statistics , the appropriate form of an empirical 

statement under the betting model is a conditional or unconditio¬ 

nal predictive distribution p(x|0) or p(x), not a posterior dis¬ 

tribution p(e| x). Other methodological models to be discussed 

here all share this predictivist character; although liberal use 

is made of prior distributions in some of these models, they 

are not bayesian in the inductivist sense. 

(2) Clearly, 'betting model' implies that at least two 

competing hypotheses are at stake rather than just one. 

(3) Vague hypotheses are acceptable under the betting model. 

Thus the uncertainty of prediction may arise not only from 

finite sample sizes, but also from personal uncertainty about 

the location of the parameter. 

(4) A final characteristic of the betting model is a repro¬ 

ducing scoring or desicion rule, as illustrated above. 

Taking the characteristics (2), (3) and (4) as variables, 

a taxonomy of predictivist methodologies results which is de¬ 

picted in Table 3. The cells of that table will be commented 
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Table 3 

Taxonomy of 'predictivistic' methodologies 

point 

prior 

prior 

dist ribution 

single hypothesis 

nonreproducing 

scoring rule 

1 

null hypothe¬ 

sis 

testing 

generalized 

testing Model 

reproducing 

scoring rule 

Van Naerssen 

1961 

competing hypotheses 

nonreproducing 

scoring rule 

e.g., Koele 

(1979) 

5 

Pi tz 

(1978) 

reproducing 

scoring rule 

betting model 

Hofstee e.a., 

1 980. 

upon in backward order. 

Model 5: Pitz (1978) presented a methodological paradigm 

in which two competing predictive distributions of a future 

observation are derived from two prior distributions (which 

Pitz called 'prediction distributions', may be for fear of 

being decried as a bayesian), and in which the support of 

one hypothesis over another is measured by the ratio 

p _ (x .) 
_3 

of the two likelihoods of the observed outcome under the two 

predictive distributions. Since Pitz explicitly mentions the 

possibility of betting, the probabilities may be conceived 

as odds, and therefore his payoff-rule may be constructed 

to be the following: 

V 
AB 

p (x .) 
* _J_ 

This model is essentially identical to our 1977 version 

(Hofstee, 1977) of the betting model. Appendix 2, however, 

proves that the ratio rule is not reproducing. This lack of 

reproducingness is an undesirable feature since the ratio-rule 



would force a rational participant to submit a prior distribution 

that deviates in a systematic manner from his or her own beliefs. 

It is hard to see how a rule which forces that kind of strategic 

behavior can be justified methodologically. 

Model 4: Comparative testing of two exact or one-sided 

hypotheses is the topic of classical statistical decision theory. 

In this tradition> Koele (1979) has recently proposed a procedure 

in which a minimal sample size is calculated such that the criti¬ 

cal regions of the two hypotheses do not overlap; consequently, 

one hypothesis can be rejected in favor of the other hypothesis. 

Since the procedure is two steps away frctn the betting model, its 

drawbacks are twofold from that point of view. In the first place, 

the decision rule is not reproducing : it may be intuitively clear 

that a participant can increase his or her chances of being put 

in the right by moving closer to the opponents' hypothesis (for 

a formal proof, see Appendix 3). Since this holds for both par¬ 

ticipants, they would move closer and closer and in the end only 

an infinite sample could solve their difference of opinion. In the 

second place, it is difficult to see the use of exact or one¬ 

sided hypotheses. Participant who would express themselves in terms 

of such hypotheses can only be people who are infinitely prejudiced 

in the sense that they award prior probabilities of zero to cer¬ 

tain intervals of the parameter scale. 

Model 3: Van Naerssens (1961) classical article on the scaling 

of subjective probability contains reproducing scoring rules for 

single predictive distributions in a binary experiment. Apart from 

certain refinements, this methodological model is only one step 

away from the betting model. Its only drawback is the single 

hypothesis character. The model cannot distinguish between events 

that are easy versus difficult to predict. Therefore under the 

model, the rational investigator would be forced to look for areas 

in which success in virtually assured. Under the betting model, the 

other person's predictive ability forms a natural baseline. There¬ 

fore the methodological moral is quite different. 

Model 2 may be constructed as the case in which a vague rather 

than an exact hypothesis is tested according to the classical statis¬ 

tical procedure. The objections to both this model and Model 1 have 
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been put forward by implication. 

A final comment should be made on the methodological phi¬ 

losophy that underlies the betting model. Contrary to the conception 

of empirical science as a serene and disinterested search for truth, 

the present approach views science as a very human affair in which 

individual investigators work on their reputation. A methodology 

should then be a set of rules and sanctions that forces people to 

do the right thing if they wish to maximize their expected reputation. 

Doing the right thing might mean, for example, not to engage in 

selective publication and not to produce truisms through rejecting 

exact hypotheses that no sensible person would ever believe in any¬ 

way. There is a fair amount of consensus that the null hypothesis 

testing methodology forces the rational investigator to display just 

such undesirable behavior. The betting model may be viewed as an 

attempt to correct for the corrupting influence of the null hypo¬ 

thesis testing methodology, while retaining its most fundamental 

characteristic, i.e.,the predictivist command that hypotheses 

should be stated in advance. 
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APPENDIX I■ 

We first show that the quadratic rule satisfies the requirements 

HI through R4. 

Rl. Let p* be the probabili 

show that 

ty submitted by A. It is sufficient 

\ >PA + <Pb - P* )qA < ~ qf)pA + (pB2 - p2,^. 

For the difference between the left and right side of the 

inequality in (I) we find 

(2) (“t - ♦ (p2 - pf2 “A PA )qA 

{ o - PA)' (1 *121 / 2 *2 
" PA) iPA + (PA - PA > (1 - PA) 

(P' 
A ' PA) ((2 " PA - P*)PA * <PA + Pa) c - PA) 

- (PA - PA)2i 0. 

Remark that equality in (I) is attained if and only if p* 

R2. The subjectively expected payoff for e.g. A equals 

,3> - (X - j (I V o - PA) 

(Pn PA> o - PA) 

- <PA - PB) {(2 " PA - PB)PA - (pA ♦ pB) (1 - pA)J 

■ (PA - PB)2 > °- 

R). See the result derived in (3). 

R4. Trivial. 

In what follows we show that for dichotomous situations the quadratic 

is the only rule that satisfies all the requirements Rl through 

The two possible outcomes of the binary experiment are called success 

and failure. Let A and B be the players, with pA (resp. p ) the 

predictive probability of A (resp. B) that success occurs^ud r 

(resp. rB) the probability which A (resp. B) assigns to the success. 

R4. 
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Let v(rA, fg) denote the payment that A receives from B if the success 

occurs. With relation to the function v we assume that v is continuous 

at each point (x,y) of the rectangle R ”^(x,y), 0^x< 1, 0 4 y 4 lj 

and differentiable in the interior of R. We remark that the boundedness 

of v follows from the required continuity of v on R (requirements R^). 

Moreover we assume that the function v satisfies the following obvious 

properties: 

(a) v(x,y) < 0 ( > 0) if x < y (x > y) 

(4) (b) v(x,x) = 0 

(c) v(x,y) = - v(y.x). 

If r = p for both players, then the subjectively expected value of A 

(resp. B), notation SEVA (resp. SEV^) equals 

(a) SEVa = pA v(pA, pB) + (I - pA) v(] ' PA. > - PB). 

(5) 

(b) SEVb - pB v(pB, pA) + (1 - PB) v(l - PB. 1 - PA)- 

Tn order that holds it is necessary and sufficient that 

PA + PB 

(6) v(l ~ Pa> 1 " PB) “ - V(PA’ Pb^’ PA + PB < 2‘ 
P + p “2 

Relation (6) follows from (5) and property lA.c. 

Combining (5) and (6) gives 

PA ' PB 

(7) SEVa - SEVb - -- v(pA, PB) , pA + PB < 2. 

2 ' PA_PB 

Remark that if + P3 “ SEV^ =* SEV^ “ 0. 

From (7) it follows with (4) that for both players the subjectively 

expected payoff is non-negative (requirement R2) . The function w, 

defined by 

(8) v(x, y) = (x - y) (2 - x - y) w(x, y) , x # y 

is for x y uniquely determined by v. 

From (7) now it follows with (8) 

(9) SEVa - SEVB - (pA - pB)2 w(pA, pB). 

From the definition of w and the properties of v it follows that 

w(x,y) > 0 for x ^ y. 
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We now prove that if R3 holds, then a necessary condition that R1 holds 

is that the function w is positive and constant on the rectangle R. 

In general 

(10) SEV. 
(rA ' V (2pA - rA ' V w{rA’ rB) 

In order that the right side of (10) achieves its maximum for r^ = 

with 0 < PA < 1, it is necessary that 

01) 
6_ 
6r [ (rA " rB)(2pA - rA ' rB) W(V "bM 

^ rA 
= 0. 

A 

Carrying out the differentiation in (11), we find that 

(12) 
6w(pA’rB) 

= 0 for all 0 < p. < 1. 
A 

In the same way we obtain 

(13) 
6w(rA,PB) 

6p 
B 

0 < pB < 1. 

From (12) and (13) and the continuity of v on the rectangle R now it 

follows that 

(14) w(x,y) - k > 0 on R. 

Combining (8) and (14) gives for k “ 1 

(l5) V(PA-PB) * (PA ' PB)(2 ' PA * Pb5 

- (PA- 1 ♦ 1 - PB)0 - PA + 1 - PB) 

” (qB " V(qA + t^B) 

. 2 2, 



APPENDIX 2 

We shall prove here that the scoring rule fitting the ratio rule is 

not reproducing, by showing that this scoring rule satisfies the 

requirements R2 through R4. 

From this and the result derived in appendix 1 it then follows 

that this rule does not satisfy R1. For simplicity we only give the 

proof for dichotomous situations. The same notation as in appendix 1 

is used. So if the success occurs, then A receives r./(rA + rg) of 

the total stake S. It is no restriction to L.'.s S = 1. 

If r = p for both players, then 

(16) 

(a) SEVa 

(b) SEVg 

PA+PB + qA+^B 

2 2 
PB + qB 

PA+PB + qA+qB 

> 0, 

> 0. 

From (16) it follows that SEVA 

2 2 
PA " PB 

SEV„ 

(17) SEV. SEV, 
B 

+ 0. 
B 

Now we know that this scoring rule does not satisfy R1. 

Let us assume that player A wishes to submit a probability rA so as 

to maximize SEVA* Therefore we consider the function 

(18) f(r)'FT-^pA+ 1 -'r -rqB qA 

and investigate for which value of r the function f(r) achieves its 

maximum on the closed interval £o,Ij . 

Since 

(19) f' (r) 
(r+PB)2 d-rtqB)2 

we find that if -pB < r < 1 + q. . then f'(r) - 0 for r - cq, where 

(20) 
/ PAPB 

/ PAPB+/ qAqB 

Let r* with 0 r* < 1 be the value of r for which the function f(r) 

achieves its maximum. 
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Then from the above it follows that 

if co<0 , then r* = 0, 

if 0 ^ c ^ 1 , then r* «= c 

° * ° 
1f co> » i then r «= 1. 

(for an illustration, see Figure 1) 

Figure 1. 



APPENDIX 3 

Players A and B have a difference of opinion regarding a certain 

parameter y . According to A, y = y and according to B, y - y . 
A B 

Without loss of generality we take y yD. Both players stake B 
an equal amount, the sum of which is taken to be 1. A number of 

observations are made. The players agree that the observations are 
. . . . 2 

sampled from a normal distribution with mean y and known variance a . 

If the mean x of the observed values is less than c = $ (y^ + y^) , 

A receives the total stakes. If x > c, B receives the total stakes. 

If x = c, the bet is undecided. A further requirement is that the 

probability a that A wins unjustly is equal to the probability that B 

wins unjustly. 

Take z such that P (z > z ) = a with z distributed in standard 
A a 

normal fashion. If the number of observations n is taken to be 
2 2 

(21) n = 4 

(v V 
then since x is distributed according to y( y, a /n ), it follows 

that 

(22) P {B wins unjustly} = P{x>c I y“yA} 
A 

= p - PA > J(uB - yA)} 

p {- 
x-n 

o//n !(ub ■ ^ 4) 

Up u. 2 az 
= P {z > } J-* . -5- } 

° I^Bl 

='P{z>z| ■ a 
a > 

Analogously, P {A wins unjustly} = a (see Figure 2) 

Figure 2. 
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It is further seen that 

(23) SEVa - SEVfi - 1 - 2a > 0 

Now consider the case in which B does not submit his true t , but 

submits u - such that u < < v Consequently, c* = 

and n =4 /(uA ~ h*)2 > n. 

As a result, SEVA - I - 2a , while SEVg = I - 2a* > SEVA> since 

a < a (see Figure 3). 

Since B can thus enhance SEVB by submitting p* + the decision 

rule is not reproducing. 
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Table 1■ 

Payoff-matrix for a binary bet under the quadratic scoring rule: 

p (C) = .7 and p„(C) = .9. 
A D 

Outcome 

participant C Not C 

A .l2 - .32 = -.08 -92 - .72 = .32 

B .32 - .l2 = .08 .72 - .92 = -.32 

Table 2. 

Payoff-matrix for a binary bet under the logarithmic scoring rule: 

p (C) = .7 and p (Q) = .9 
A o 

Outcome 

participant C Not C 

A 2log 7/3 = -.36 2log 3/i = 1.58 

B 2log 9/7 = .36 2log 1/3 = -1.58 

Table 3 

Taxonomy of 'predictivistic1 methodologies 

single hypothesis competing h^ potheses 

nonreproducing 

scoring rule 

reproducing 

scoring rule 

nonreproducing 

scoring rule 

reproducing 

scoring rule 

point 

prior 

1 

null hypothe¬ 

sis 

testing 

4 

e.g., Kaele 

(1979) 

6 

betting model: 

Hofstee e.a., 

1980 

prior 

distribution 

2 

generalized 

testing Model 

3 

Van Naerssen 

1961 

5 

Pitz 

(1978) 


