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Summary 

In a Bayesian analysis of the probability parameter n of a binomial 
distribution, a prior distribution for II would be combined with the 

sample data consisting of X=x successes in n independent trials. The 

choice of an informative prior of the natural conjugate (beta) form 

implies in most cases that some values of X have a very low predictive 

probability. The present paper argues that an investigator who would ob¬ 

tain such an unlikely value of X will feel inclined to distrust either 

his data or his informative prior. If the data are reliable, he may be 

led to an after-the-fact distrust of his own prior specification rather 

than to a revision according to Bayes’ theorem. 

This paper explores a strategy in which the original beta prior is 

replaced by a mixture in which this beta distribution, with a strong 

weight, is mixed with an uninformative beta distribution, with a small 

weight. Using this mixture prior, the predictive distribution for X no 

longer contains extremely unlikely values. The posterior distribution 

forn given X,on the other hand, is hardly changed as long as X assumes 

values with moderate or high predictive probability under the original 

prior. 

The. mixture strategy thus acts like an insurance policy, in the 

sense that a small premium is paid in normal circumstances (a slight 

bias of the posterior estimate) in exchange for a large gain in the 

unlikely case of a sharp conflict between data and prior. Two reasons 

for adopting the strategy can be distinguished, in which the same algebra 

leads to a somewhat different interpretation. First, the investigator may 

be convinced that the mixture, with its heavier tails, is a better re¬ 

presentation of his personal prior ideas than even the best fitting member 

of the class of beta densities. Second, when the best beta well represents 

his ideas, he may still want to protect the analysis against unforeseen 

data values sharply contradicting those ideas. 



1. Introduction 

It is seldom stressed that virtually all statistical procedures 

are conditionali"if assumptions A, B, C are correct, then the data D 

lead to conclusion Z". As is well known, a procedure which is optimal 

under such assumptions may perform badly when they are violated. Relevant 

amendments are found under keywords such as robustness, outlier detection 

pretesting, testimators, distribution-free tests or adaptive inference. 

Among the reasons for the limited popularity of such alternatives are 

tradition, availability, appreciation of elegant and simple procedures, 

a firm belief that serious violations of the standard assumptions are 

rare, and overestimation of the loss of efficiency involved in the use 

of alternative procedures. 

Many researchers seem to be unwilling to sacrifice a little under 

ideal circumstances, even when a lot could be thus gained in a less 

favorable situation. And yet, that is precisely what the present paper 

asks them to do, in the special context of prior specification for 

Bayesian inference. Contrary to what an occasional optimist might 

believe, assumptions like independent observations, homoscedasticity 

and a particular type of distribution, are generally just as vital 

to a Bayesian statistical analysis as they are to a frequentist one. 

At most we can hope that the use of prior information diminishes the 

impact of outliers etc. on the final results of a Bayesian analysis. 

This diminished impact has e.g. been demonstrated where the analysis of 

a small sample has been improved by a Bayesian method using samples 

from similar though not identical populations; examples are the extension 

of Kelley's formula for true score estimation (Novick & Jackson (1974, 

p.308-322))and m-group regression (Novick, Jackson, Thayer & Cole 

(1972); Molenaar & Lewis (1979)). 

It has seldom been explicitly discussed, however, that prior infor¬ 

mation is only beneficial when there are no gross errors in its specifi¬ 

cation. Indeed Bayesian statistics has an additional robustness problem 

to the ones discussed above, namely: how sensitive are the conclusions 

to the choice of the prior? For dichotomous conclusions. Vijn (1980) in¬ 

troduces the "robustness region" consisting of all values of the hyper¬ 

parameters governing the prior distribution, for which the conclusion 

remains unaltered. Here a different approach will be chosen: the prior 

that the investigator has specified will be mixed with a component indi¬ 

cating (almost Hotel uncertainty. This second component will serve as our 

"safety belt", or "insurance company" in the case of a violent collision 
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between the prior and the data. The adaptive characteristic of the 

proposed procedure will ensure that the posterior weight of the non- 

informative prior component will grow when the discrepancy between the 

data and the informative prior component increases. When the data agree with 

the informative prior, however, the weight of this informative component 

assumes a value close to one, and little precision is lost. The whole 

procedure thus resembles the payment of a small insurance premium 

against a rare but enormous loss. 

2. The beta-binomial case: example of a dilemma 

Let X be the number of successes in a series of n independent 

trials with known n and constant but unknown success probability II. 

Our model density or likelihood function is thus binomial: 

(2.1) p(x=x|n) = (") nx(i-n)n'x (x-o,i.n) . 

The natural conjugate prior density for the parameter II is the 

beta distribution with parameters a and b, say, and with probability 

density 

(2.2) = BCiTby 7Ta"l(l_1T)b"1 

Here B(a,b) - F(a)r(b)/r(a+b) and the gamma function satisfies r(x+l) ■ 

x r(x). Formula (2.2) can describe rather different forms of prior be¬ 

liefs by suitable choices of a and b. This flexibility is combined 

with mathematical elegance: the posterior distribution of H after 

observing X=x is again beta with parameters a+x and b+n-x, and the prior 

predictive distribution for X is the beta-binomial or Polya distri¬ 

bution with parameters n, a, and b. 

In a given research situation, a and b should now be chosen such 

that they formalize the investigator's prior knowledge on II. This 

problem has been tackled by offering him bets (e.g. Raiffa, 1968) or 

by an interactive and adaptive questioning sequence embodied in a 

computer package (e.g. CADA as described in Isaacs & Novick, 1978). 
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The source of the prior knowledge may be previous random samples, data 

for similar experiments or unspecified beliefs; all we need here is 

that the investigator decides at a certain moment that his ideas on 

n are well represented by a certain beta distribution, say with parameters 

a and b. 

Example. The author interrogated himself on the fraction II of female 

students among the roughly 17,000 students enrolled at the University 

of Groningen in the academic year 1979/1980. Seated behind a terminal, 

he used the CADA computer package to specify and reconsider his ideas 

about the quartiles, highest density regions, mode and graph of the 

density for n until he felt satisfied that a beta distribution with 

a =» 20 and b = 40 well represented his prior information. 

He then confrontated himself with the question of how he would 

react if he was told that a random sample of n ■ 100 students had 

been drawn and had been found to contain only X ■ 10 females. The 

sample estimate for IT would thus be X/n ■ 0.10, 

In the 

predictive Polya (n, a, b) distribution for X based on the prior, the 

event X ^ 10 has a probability of 0.001. In short, there is a violent 

discrepancy between the prior and the data. 

What kind of action would I undertake, facing the collision between 

data and prior knowledge? The formal strategy, discussed first, would 

be to stay strictly within the Bayesian framework. My posterior density 

for n given X * 10 out of n ■ 100 and a beta (20,40) prior is a beta 

(30, 130) distribution; it has mean 0.19, standard deviation 0.03,and 

90 percent highest density region ranging from 0.14 to 0.24. If I felt 

enough worries I might try to get hold of another sample of 100 re¬ 

gistered students. Intuitively I might be inclined to predict that 

this second sample contains either roughly 10 percent females (in which 

case my prior was too optimistic about emancipation) or just over 30 

percent (in which case my first sample was a stroke of very bad luck). 
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Formally however, Bayes’ theorem forces me to use a predictive distri¬ 

bution for the second sample in which the event 15 5 X < 25 has a 

probability of 0.71 (Polya distribution with n=100, a=30, b=!30). 

Informally, the data-prior collision makes me feel very tempted 

to solve my cognitive dissonance by an after-the-fact distrust of 

either data or prior. Let us criticise the data first. I might for¬ 

ward the suggestion that the data were drawn from a different universe 

(e.g., excluding the university's teachers' colleges, where female 

participation is high) than I envisaged when choosing my a=20 and 

b=40 prior. Alternatively, the registration of the sex may have con¬ 

tained clerical errors, or the sampling procedure may have been biased. 

Such afterthoughts on the quality of the data are not unusual in 

actual research. It would be desirable, though difficult, to develop 

a formal statistical model dealing with the risks and error rates of 

a procedure in which unexpected outcomes lead to a thorough checking 

of the sampling,measurement and data processing, which extra check 

would be omitted when no surprising results would be found. Such a 

development would be outside the scope of this paper, which will follow 

the traditional '^sumption that the data (10 females among 100 students 

in our case) wert carefully collected. 

What remains, then, is a temptation to solve the data-prior colli¬ 

sion by disavowing the beta (20, 40) prior. By "disavow" more is meant 

than "revise according to Bayes1 theorem", because as was mentioned 

above, this had little intuitive appeal. My personal experience 

is that I suddenly recalled the slight uneasiness that I had felt at 

the completion of the interactive session leading to my choice for 

a=20 and b=40.1 said at that time that I was satisfied with this choice. 

And yet, why did I pretend that I was so sure? Perhaps my impression about 

female university enrollment was biased by my familiarity with the Social 

Science students? And even knowing that fewer female students 

register for Natural Sciences, I have only rather vague ideas about 

the proportion of students that those two subgroups contribute to the 

whole student body. My ideas about female student - registration for 
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Medicine or Arts may be based on the situation of several years ago. 

Come to think of it, there are lots of reasons why I should regret 

having been so specific about my prior beliefs. 

3. A beta mixture as an insurance policy 

The following proposal is made not only for the specific example 

discussed above, but for any situation in which an investigator has just 

decided that the beta distribution with parameters a and b best fits his 

prior information on an unknown binomial parameter IT. Choose a number 

X (0 < A< I) and another set of beta parameters c, d and consider the 

prior distribution which is a mixture of the two beta distributions: 

(3.1) JI-C: Abeta (a, b) + (1 - A) beta(c. d), 

where the symbol ^ denotes "is distributed as". In our female student 

enrollment example, I decided to choose A - 0.80, c - d • 2, keeping 

a = 20 and b * 40 as parameters of the first component. 

The mixture prior for this case is graphed in figure 1. 

figure 1 .«ftee page 71 

This mixture is almost as peaked at 0.33 as the first component, 

but attributes a little more weight to values of IT close to 0 and 1. 

Within the beta family itself, the only way to allow for more uncer¬ 

tainty would be to diminish a + b, keeping a/b constant. The dotted 

line in figure 1 shows that this is less effective as an insurance 

policy than the mixture: if both have the same mean and variance, 

then the mixture has a higher kurtosis, cf. Molenaar and van Zwet 

(1966), and it was precisely this concentration of probability both 

in the peak and in the fat tails that mimicked my uncertainty better 

than the single beta with lower peak, high "shoulders" and still very 

little probability in the far tails. 
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The mixture with X = 0.95, c = d = 1, graphed in the same figure, 

will turn out to give even more protection against outlying values of 

X. I dismissed it, however, because its prior density f(7r) and its 

predictive density P*(x) given in Table 1 were too far from my prior 

ideas. See also the discussion following Table 1. 

We shall return to the aspect of mimicking uncertainty in section 

6. First, however, we shall discuss the posterior distribution of IT, 

produced by combining the prior mixture (3.1) with the observation 

of X=x successes in n independent trials. For that discussion, it is 

more convenient to temporarily use the notation 

(3.2) aj-a, b^b, A,-*, a2=c, b2=d, 

Let f.(u|x) denote the beta (a^+ x, b^+n-x) posterior density that 

would be obtained by combining the i-th component of the prior with 

X-x: 

/o TV c / I \ 1 a.+x-l xD.-f 
(3.3) fiH*) = B(a.+xTT:+n-x7 77 1 (I 1 

1 1 (0 < ir < 1; i-l, 2) 

Nb.+n-x-l 

and let p^(x) denote the Polya (n, a_^, b^) predictive density for X 

using the i-th component as a prior: 

(3.A) p£(x) = (^) B(a^+x, b^+n-x)/B(a^, b^) 

(x=0,1,...,n; i»l,2) . 

The joint 

(3.5) 

density of H 

2 i=! 
= E A . p . (x) 

i= 1 1 1 

and X using the mixture prior (3.1) is 

^iO TrX(l“7T)n X 7Ta^- ‘dVi VB(a^,b^) 

f£(^Ix)• 
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The conditional density of H given X=x, which is the posterior based on 

the mixture prior, now equals 

g (tt,x) 2 
(3-6) £m(*|x) = = _Z wi(x) f.(Tr|x), 

a mixture of the two component posteriors with weights 

dp f 
(3.7) Wi(x)= Xj, p£(x)/{Xj Pj(x) + X2 p2(x)}. 

The ratio of the two weights is thus {Xj pj(x)}/{X2 P2(x)}, which 

clearly shows the adaptive nature of the procedure: when a value X»x is 

observed which is very improbable under the first prior but not under 

the second, then the weight of the first component is decreased com- 

pared to X., and vice versa. 

This is illustrated in Table 1. Although only some selected values 

of x are listed, it is clear that the posterior weight Wj (x) becomes 

small for all values which have a low predictive probability Pj(x). 

Also tabled are the posterior means 

1 
(3.8) u.(n|x) = / nf . (tt | x) dfi “ (a.+x)/(a.+b.+n) (i"l#2) 

0 1 ill 

for both components, and the posterior mean for the mixture, which is 

1 2 
(3.9) p (n|x) » /Tr^M(7T Ix) dir - I W. (x) p.(n|x) . 

0 i-1 

It follows from a complete version of Table 1 that for 20 4: X ^ 46, 

which has a predictive probability under of 0.92, the posterior means 

and Mj differ by 0.01 or less. 

_table_T_ see_j)ajge 72_ 

A next point illustrated in the table is that the predictive density 

2 
(3.10) p^(x) * E X^ pi(x) 

i-l 

based on the mixture (3.1) does not assign extremely low probabilites 
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to very small or very large values of x, as does Pj. 

This property holds even more strongly for the mixture containing 

0.05 times the uniform as a second component; its predictive denstiy 

is denoted by p*(x) in Table 1. For such a mixture it is easily seen 

that P*(x) RJ 0.05 P„(x) = 0.05 for all values of x for which p.(x) 
M ^ ^ J £ 

is negligible. As announced earlier, this may not meet the needs or 

an investigator who feels that the best fitting beta distribution 

has lighter tails than his personal prior. 

Section 4 will elaborate the idea that replacement of the first 

component by a mixture does little harm as long as the data are in 
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harmony with the beta (a,b) prior. Sections 5 and 6 investigate how 

much can be gained by this replacement in the case of unexpected out¬ 

comes. 

4. A small loss when no catastrophe occurs 

In this section it is assumed that the investigator wants to esti¬ 

mate II with a quadratic loss function, and that the true prior for H is 

beta (a,b). The terminology "true prior" will be evident in situations 

where the unknown proportion II is itself generated by some random me¬ 

chanism. It is also defensible when the prior is a summary of an inves¬ 

tigator's prior knowledge and/or prior beliefs, however: a "wrong" prior 

may be the one entertained by another investigator (adversary statistics, 

cf. Novick & Jackson, 1974, p.148), or the investigator himself might 

consider how much difference it would make if he replaced the original 

prior by the mixture. 

Postponing the discussion of losses under other priors until the 

next sections, we shall now evaluate the expected losses of various 

estimators under the assumption of a beta (a,b) prior distribution 

for n. 

Any estimator, tt say, has an expected loss given X“x of 

1 - 2 
(4.1) / (tt -it} f (tt|x) dir 

0 

This loss given x is clearly minimized by taking for it the posterior mean 

1 
(4.2) p (n|x) ■ / it f (tt|x) drr - (a+x)/(a+b+n) . 

0 

The loss of this quadratic estimator, which is unbiased, equals the 

variance 

(4.3) a^(n|x) - (a+x)(b+n-x)(a+b+n) ^ (a+b+n+1) \ 

by the standard expression for the variance of a beta distribution. 
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Averaged across x, which has the Polya (n,a,b) distribution Pj(x) 

given by (3.4) in the notation (3.2), we shall denote this loss by AVEj 

VARj, where the first index tells us that the averaging is carried out 

assuming that the first component distribution beta (a,b) is the true 

distribution of IT, and the second index tells that the variance is also 

based on this first component distribution. For the evaluation of AVEj 

VARj we multiply (4.3) by Pj(x) obtained from (3.4) and rewritten by 

(3.2) in the original notation; next four out of the five factors occurring 

in (4.3) can be drawn into the beta function by using the line below (2.2). 

The result contains the sum of all probabilities of a Polya (n, a+1, b+1) 

distribution, and the result of the algebra is that 

n 2 
(4.4) AVEj VARj= E pj(x) af(n|x) » 

x=0 

r /n'v B(a+x+l, b+n-x+1) B(a+1, b+1) 1 
x_q x B(a+1 ,b+l) B(a,b) a+b+n 

ab _ 
(a+b)(a+b+1)(a+b+n) 

If any other estimator ft is used than the posterior mean (4.2), we 

may evaluate (4.1) by writing tt - tt - tt - yj(n|x) + yj(Jl|x) - ir . This 

leads to the usual split of the square, in which the cross product term 

gives no contribution because the second difference dees not depend on 

it. The loss of any estimate tt given X*x thus equals 

(4.5) / (n - tt}2 f (tt|x) dir = a2(n|x) + {y (Jl|x) - tt}2. 
0 

Averaged across x the loss for tt thus is the sum of the minimal loss 

AVE. VAR. and the averaged squared bias to be denoted as AVE.SQ BIAS*; 

this parallels the well known sampling theory result on the mean 

squared error although our interpretation is quite different. 

Before we turn to our mixture estimator yM(n|x), let us consider 

two simple competitors. A non-Bayesian would use the sample fraction 

X/n as his estimator tt. Still assuming that the beta (a,b) distribution 
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is the valid prior, this means compared to the use of (4.2) ar 

unnecessary additional loss of 

(4.6) AVE, SQ.BIASx/n 

n 

E 

x»0 

a+x 

a+b+n 

x -.2 
--} P 

£ { 
x-0 

a-*-b 

a+b+n >2 ^ iTb -f }2P,W 

1 

a+b 

(x) 

AVE j VAR|; 

here it has been used that when X has the Polya distribution Pj(x) 

then X/n has mean a/(a+b) and variance n (a+b+O^a+b)^ sum 

is thus a constant times this variance, which leads after a little 

algebra to the desired result. 

The second competitor is the prior mean a/(a+b)i An investigator 

neglecting the data and using this estimator suffers, compared to the 

use of (4.2), an unnecessary additional loss of 

(4.7) AVE1Sq.BIASa/(a+b) - }2 

- ” { —J2 ( ^ - -rrr >2 p. (x) --i- 

The results(4.6) and (4.7) clearly show how the unneces.ary extre 

losses are related to the sample size n and the fictitious sample size 

a+b with which the prior knowledge is equivalent (see e.g. Novick & 

Jackson, 1974, p.126). These two quantities determine the weights that 

are attributed to X/n and a/(a+b) in the optimal estimator (4.2), which 

can be written in the form a^b^n + a"b+n ^ showing the compromise 

between prior and data. Results if this type are fairly common; for 

their use in philisophical inference models cf. e.g. Kuipers (1978, 

p. 56), on generalized Carnapian systems. 

Let us now return to the effect of our mixture strategy on the 

posterior estimation of TI, still under the assumption that the beta 

(a,b) prior is the true one. This strategy implies the use of the 

posterior mixture mean pM(n|x) defined in (3.9). This involves an 

unnecessary additional loss of 

n 9 
AVE j SQ. BIAS^ - l {u,(n|x) - nM(n|x) r p, (x). (4.8) 
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The expression between curly brackets can be rewritten as 

w2(x) {p j (IT | x) - p2(n|x)}, but substitution does not lead to a sum 

that can be written in an easy closed form, like above. We shall 

therefore have to use other means to analyze (4.8). 

The claim to be substantiated is that the insurance premium is 

small, i.e. that the additional loss inflicted by the use of in 

a situation when Pj would be optimal is small, i.e. that the averaged 

squared bias is small compared to the averaged variance. Numerical support 

for this claim is found in Table 2. This is confirmed by analytical 

considerations, not worked out here, based on the idea that 

a specific value of x gives rise to a sizeable contribution to the 

averaged squared bias only if simultaneously 

(i) Pj(.x) is non-negligible, 

(ii) w2(x) is non-negligible, 

(iii) (a+x)/(a+b+n) differs substantially from u20l|x) » (c+x)/(c+d+n). 

Luckily it turns out that the values of x for which the two fractions 

in (iii) are far apart are in most cases ruled out by the influence 

of condition (i) for x/n far from a/(a+b) and condition (ii) for inter¬ 

mediate values. Exceptions occur mainly when n is small compared to 

a+b (details will not be given here). 

Table 2 gives a condensation of our calculations for some 80 dif¬ 

ferent parameter combinations all having X = 0.8. It. seems that the 

relative extra loss, defined as 

AVE|JQ.BIAS^ 

(4.10) RELj = REL| (a,b,c,d,X,n) - —AVE " VAR—~ 

is typically less than 0.1 for (a+b)/n^ 1, and 

0,05 or less for (a+b)/ni 0.5, unless the ratio', a/(a+b> and c/ic+J) 

differ by as much as 1/10 differs from 1/2, in which case the values 

of RELj can be twice as large. One could then decrease REL| by choosing 

c < d for a << b; this is illustrated in the bottom part of Table 2 and 

it will be briefly discussed in section 7. 

Table 2 gee page 73 
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Very large relative losses, due to extreme forms of bias, obviously 

occur when n is very small compared to a+b: the combination of rather 

specific prior knowledge and only little data is a counter-indication 

against paying insurance premiums. 

As a footrule one might infer from the complete dataset condensed 

in Table 2 that, for c=d=2 and X - 0.8, 

RELjSi: 0.06 (a+b)/n for a/(a+b) = 1/2, 

RELj^ 0.08 (a+b)/n for a/(a+b) = 1/3 or 2/3, 

RELj ^ 0.18 (a+b)/n for a/(a+b) = 1/10 or 9/10. 

Although deviations from this linear relationship occur, and seem to 

be growing with (a+b)/n, this footrule gives at least the order of 

magnitude of the relative extra loss RELj incurred by using the mixture 

prior when the original beta (a,b) prior was correct. 

Compared to the use of X/n, for which the equivalent of RELj would be 

(a+b)/n by (4.6), the mixture is certainly very efficient under the 

conditions studied here. Table 2 leads us to the conclusion that the 

avaraged squared bias in using yM(n|x) is small, both in absolute sense 

and relative to the average variance which is the minimum loss, as long 

as (a+b)/n is I or less; this becomes even more true when n*10 is ruled 

out on the grounds of being an unrealistically small sample size. 

The last two columns of Table 2, marked by stars, again give the 

corresponding results for the mixture with \ =* 0.95 and c d - 1. 

It can be seen that RELf is typically 1/3 of RELj, or even less: mixing 

with 0.05 times a uniform prior has a very small effect on the quadratic 

loss estimation of tt when the true prior is beta (a,b). The only non- 

negligible effects seem to occur when n is much less than a + b. The 

footrule 

REI* ra .02 — 
1 n 

seems to work well for c * d “ 1 and X » 0.95, although it is a little 

optimistic when a/b differs strongly from 1. 
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5. Losses under the mixture prior 

In section 2 an example was given of a violent collision between 

prior and data. Let us now investigate whether our "insurance policy 

of replacing the beta (a,b) prior by the mixture offers protection 

against such*collisions. 

When 1 really has a beta (a,b) distribution, collisions are rare 

by definition, and unavoidable when they occur: each random variable 

on rare occasions assumes very improbable values, and all statistical 

analyses can be rather misleading when such a rare phenomenon happens. 

The occurrence of values for X which are very improbable under the 

predictive distribution p^x) given in (3.4)however, can also be viewed 

as an indication that the beta (a,b) prior was incorrect. When assessing 

the benefits of the mixture strategy, we shall assume in this section 

that not beta (a,b) but the mixture (3.1) is the true prior distribution 

of II , and investigate the quadratic loss incurred by an investigator who 

continues to use beta (a,b) instead. 

The best estimate for I of course is uM(H|x) defined by (3.9). It it 

under our new assumption unbiased, and its loss given X^x thus equals tha 

posterior variance 

2 2 
(5.1) a^(n|x) =■ l w.(x) a?(n|x) + Z w^x) (u^(Il|x) - uM(n|x)}2. 

i=l 1 i“l 

Averaged across x this becomes 

n 2 
(5.2) AVE^AK^ = Z P[I(x) oM(n|x), 

x=0 

where given in (3.10) is the predictive distribution for X based on 

the mixture (3.1). 

By a reasoning analogous to that leading to (4.5), the additional 

loss, averaged across x, of using yj(n|x) instead of u^(n|x) equals 

n 2 

(5.3) AVEmSQUARED BXASj - Z pM(x) {pM(n|x) - UjOlIx)} . 

Let us investigate (5.2), (5.3) and their ratio, the relative extra loss 

AVEm SQ.BIASj 

(5.4) REI^ = AVE^VAR^ 
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We may re-examine conditions (i) (ii) (iii) stated in section 4, but 

(i) is now replaced by the condition that PM(x) is non-negligible. This, 

however, occurs for far more values of x, as was discussed in section 

3 and as follows from the expression (5.1) for its variance. We are 

led to expect a somewhat larger minimum loss than in section 4, but a 

much larger average squared bias. 

The numerical results confirm this. Table 3 shows that is 

typically much larger than RELj, for the case X » 0.8, c”d*2. To the 

right of the vertical bar the table describes the X - 0.95, c-d-1 case, 

again denoted by stars: here is much larger than REL'J. Low values 

of REL^ and REL* occur only when a and b are both small, and not too 

different from each other: in such cases the mixture resembles the 

original beta (a,b) prior. The table does not show the new minimum 

loss AVE^VAR^. It is usually between 1.3 and 2 times AVEjVARj which 

was given in Table 2, and almost equal to AVEjVARj in the starred 

case. 

6. Gains in case of a catastrophe 

The conclusion from section 4 and 5 is that unless a+b exceeds n 

there is usually only little extra loss in using when Pj would be 

optimal, and quite a bit more loss when Uj is used in a typical mixture 

situation. 

Our investigator, however, may tell us that this is not a convincing 

argument in favor of the mixture. He will reason that he considers the 

beta (a,b) prior as far more probable, indeed it is his best choice of a beta 

prior. Why then sacrifice it, just for the reason that if ever some 

other state of affairs were true, using Uj would lead to substantial 

biases? 

Indeed the use of the quadratic loss function, very defensible in 

section 4, is not adequate when it comes to assessing the possible gains 

of the mixture strategy. We want to be insured against the embarrassment 

caused by a serious conflict between the data and the beta (a,b) prior. 

How do we measure the embarrassment caused by observing a value that the 

experimenter considered as very unlikely? Postponing the point that all 

individual probabilities tend to be small when n is large, we could roughly 

say for a person with predictive distribution pj(x) that an observation with 
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Pj(x) = 0.01 may cause a mild surprise, pj(x) = 0.001 may be a source of 

worries, and pj(x) of 0.0001 or less may be viewed as very serious. This 

is purposively stated in such vague terms, because the amount of distrust 

in either data or prior would depend very much on external factors that 

are not incorporated in our model. 

For our operationalization of embarrassment, we stipulate that our 

measure should go up when Pj(x) decreases, but not linearly: a logarithmic 

scale is more adequate. One could even argue in favor of a threshold due 

to the fact that probabilities of 10 ^ and 10 ^ lead to the same embar¬ 

rassment. For mathematical simplicity and in order to avoid the arbitrary 

choice of such a threshold value, we shall use - log pj(x) as the embar¬ 

rassment caused by observing x. 

If p is indeed the true distribution, our expected (minimum) embar- 
n 

rassment is thus - £ P,(x) log p.(x). If our predictive distribution 
x=»0 

is pM> and p^ is true, we thus have an additional expected embarrassment 

of 

n 

(6.1) AVEj EMBm - I pj(x) log (Pj(x)/pM(x)}. 

x=0 

The usefulness of the information discrimination statistic for our pur¬ 

pose depends very much on its asymmetry: when p^ describes the true state 

of affairs then someone predicting according to Pj has an additional ex¬ 

pected embarrassment of 

n 

(6.2) AVE^ EMBj - Z pM(x) log (pM(x)/pj(x)} , 

x*0 

which is typically much larger in our application, because the combina¬ 

tion of a small p„ and a large p is rare, but a very small p. fre- 

quently accompanies a pM that is moderate or large. The last columns 

of Table 1 provide a numerical illustration; there one obtains that (6.1) 

equals 0.099 but (6.2) equals 0.833 for X - 0.8, c-d-2; for the X - 0.95, 

c«d“1 case these numbers become 0.012 and 0.052 respectively. Values of (6.1) 

and (6.2) are displayed in Table 3 for various value combinations for a,b,n: in 

terms of embarrassment much is lost when prior 1 is used and the mixture is 
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true, and much less is lost when the reverse holds. Note, however, 

that (6.1) and (6.2) also seem to grow with the sample size. 

In order to give the reader some insight in the meaning of the 

numerical values of AVE^ EMBj, the eighth column of Table 3 gives 

(6.3) P^PjOO 0.00015} ; 

the probability, evaluated under pM> of obtaining some value of X for 

which the predictive density Pj(X) would be 0.00015 or less. Of course 

embarrassment should not be a constant for any p^X)^ 0.00015 and zero 

for all X with larger predictive density, and the bound itself is ar¬ 

bitrarily chosen. Still it may help to see that such a probability is 

below 0.05 when (6.2) is below 0.5, while it is below 0.10 if (6.2) does 

not exceed one. The highest values of (6.3) occur predominantly with the 

highest value of (6.2), but there are now some violations of monotonicity. 

We conclude that our mixture is successful in preventing or diminishing 

embarrassment caused by the very low probabilities of some extreme values 

of X. .Let us repeat, however, that the investigator should start by a 

critical evaluation of the data gathering and processing which, might 

provide a clue for such an extreme value. 

7. Discussion 

This is a first draft of a model incorporating doubt about the 

validity of the model itself. The style may have irritated the reader: the 

author switched on many occasions between the role of an investigator 

and the role of someone looking over the investigator's shoulder. It 

was already observed that the mixture prior can be viewed as an improved 

prior, curing the light-tailedness of the beta that best fits the middle 

region, but also as an insurance policy in which someone willfully accepts 

a misrepresentation of his/her prior beliefs in order to secure protec¬ 

tion against unexpected outcomes. The second approach places itself out¬ 

side of the strict Bayesian context in which "the" prior should be re¬ 

vised by the data into "the" posterior; the present author doubts whether 

this normative view continues to be a fair description of what a serious 

investigator would do in cases of surprising outcomes. 

The tentative character of this paper lies not only in this interpreta¬ 

tive dilemma. Let us mention a few other points deserving further atten¬ 

tion. 
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The weight of the first component was taken to be either 0.8 with 

c=d=2 or 0.95 with c=d=l. If the experimenter is firmly convinced that 

values of X very close to 0 or n are extremely unlikely, he might try 

c=d=3 for the second component instead of c=d=2. A trial for three 

parameter combinations suggested that the premium as operationalized 

by RELi does not decrease substantially, whereas less is won in cases 

where the mixture prior is true. Similarly , a few trials with 

X = 0.9 and c=d=2 did not look very promising: the insurance premium 

is almost halved compared to X = 0.8, but gains in preventing loss or 

embarassment decrease more than proportionally. 

With a minor exception in section 4 (p.13-14), the original and 

the mixture strategy have only been compared in situations where one 

of them is correct. Their behavior under other circumstances should be 

studied is some detail. That will also shed more light on the question 

whether it is useful to replace c*d by c < d when a<< b, as was done 

in the last lines of Table 2. 

Point estimation with quadratic loss is certainly not the only 

possible end product of a beta-binomial analysis. When highest den¬ 

sity regions for IT are desired, the analysis is complicated by the fact 

that an investigator using a wrong prior mis-specifies not only the 

centering but also the width of the interval. This interval will thus 

not only have a wrong probability content, but also miss some values 

on one side which have a higher true posterior density than some 

wrongly admitted values on the other side. Is there a loss function 

that satisfactorily compares two such intervals? 

This paper has little to offer to the Bayesian who firmly believes 

that his original beta (a,b) distribution is absolutely correct, and 

should go on combining it with the sample via Bayes' theorem. It also 

has little value for a sampling theorist who believes that any decision 

should be based on the sample result alone. He will, however, get beaten 

by better predictions from Bayesian analysis in all cases where the prior 

information that he chooses to neglect is somewhat substantial and 

somewhat reliable. 
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What remain, then, are analysts who have some reliable substantive 

knowledge, but who feel that the best beta distribution does not include 

the long tails that mimick their conviction that outlying sample values 

may occur more frequently than indicated by the Polya predictive distri¬ 

bution that flows from the chosen beta prior. In a pilot experiment jointly 

with Charles Lewis, the author has confronted six subjects, who had just 

finished deciding on a beta prior for a well specified problem, with a 

sample result which was an outlier in this sense. Most subjects had some 

doubts on the validity of the sample result itself, but all of them ex¬ 

pressed embarrassment and also seemed convinced that a straightforward 

application of Bayes' theorem would not be the best thing to do. The 

present paper hopefully is a first step toward the development of a 

useful alternative strategy. 

Hofstae (1977, 1980) has advanced his betting paradigm for scientific 

investigation: a scientific statement is essentially a prediction about 

the outcome of an experiment, and could be formulated as a betting offer 

on this outcome. In that context, the present author offers a bet that 

investigators using mixture priors will win more bets than investigators 

using beta priors, let alone investigators using no priors at all. 
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Figure 1. Densities of beta (20,40), two mixtures and beta (4,8) (dotted). 
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Table 1. 
Posterior weights and means after obtaining x successes in n=100 trials, 

for selected values of x, when the prior for II is the mixture (3.1) with 

X = 0.8, a = 20, b = 40, c=d=2. Also given are the predictive probabilities 

of X=x based on the first component, see (3.4), and on the mixture, see 

(3.10). To the right of the vertical line the predictive probability 

and first component weight for X = 0.95, a = 20, b = 40, c=d=l. 

X w j (x) vijCnIx) y2(n|x) 

0 0.00 0.13 

4 0.00 0.15 

8 0.03 0.18 

12 0.23 0.20 

16 0.61 0.23 

20 0.83 0.25 

24 0.91 0.28 

28 0.94 0.30 

32 0.94 0.33 

36 0.93 0.35 

40 0.91 0.38 

44 0.84 0.40 

48 0.70 0.43 

52 0.46 0.45 

56 0.20 0.48 

60 0.06 0.50 

64 0.02 0.53 

68 0.00 0.55 

72 0.00 0.58 

76 0.00 0.60 

80 0.00 0.63 

84 0.00 0.65 

88 0.00 0.68 

92 0.00 0.70 

96 0.00 0.73 

100 0.00 0.75 

0.02 

0.06 

0.10 

0. 14 

0.17 

0.21 

0.25 

0.29 

0.33 

0.37 

0.40 

0.44 

0.48 

0.52 

0.56 

0.60 

0.63 

0.67 

0.71 

0.75 

0.79 

0.83 

0.87 

0.90 

0.94 

0.98 

uM(n|x) 

0.02 

0.06 

0. 10 

0. 15 

0.21 

0.24 

0.27 

0.30 

0.33 

0.35 

0.38 

0.41 

0.44 

0.49 

0.54 

0.59 

0.62 

0.67 

0.71 

0.75 

0.79 

0.83 

0.87 

0.90 

0.94 

0.98 

P,(x) PM(x) 

I5 
<10 10 

< 10-5 0.001 

3*10-5 0.001 

5*10-4 0.002 

0.003 0.004 

0.012 0.011 

0.026 0.024 

0.043 0.037 

0.052 0.044 

0.047 0.040 

0.034 0.030 

0.019 0.018 

0.009 0.010 

0.003 0.005 

0.001 0.004 

0.003 

4*10~5 0.003 

< 10"5 0.003 

< 10~5 0.002 

< 10‘5 0.002 

< 10-5 0.002 

< 10"5 0.002 

< 10"5 0.001 

< 10'5 0.001 

< 10"5 0.001 
-5 -4 

< 10 3 10 * 

p*(x) w*(x) 

5*10-4 0.00 

5*10-4 0.00 

5*10-4 0.06 

0.001 0.49 

0 004 0.86 

0.011 0.96 

0.026 0.98 

0.042 0.99 

0.050 0.99 

0.045 0.99 

0.033 0.98 

0.019 0.97 

0.009 0.94 

0.004 0.86 

0.001 0.64 

7*10‘4 0.29 

5*!0'4 0.07 

5* 10_4 0.01 

5* 10-4 0.00 

5*10-4 0.00 

5* 10”4 0.00 

5*10-4 0.00 

5*1O-4 0.00 

5*1O-4 0.00 

5*10-4 0.00 

5*10_4 0.00 
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Table 2. 

Calculation of REL, defined by (4.12). Unless stated otherwise. c=»d-2 

A = 0.8, but to the right of the vertical line c=d=l and A - 0.95 
and 

a bn 

10 10 100 
10 10 20 
30 30 60 
10 10 io 
30 30 30 
30 30 20 
30 30 io 

4 8 100 
4 8 60 

20 40 360 
4 8 36 

60 120 360 
4 8 20 

20 40 100 
60 120 180 

80 120 90 

60 120 60 
20 40 20 
20 40 io 
60 120 30 

2 18 100 
2 18 60 

6 54 120 
2 18 36 
6 54 60 
2 18 20 
6 54 30 

2 18 10 
6 54 20 

14.4) (4.8) (4.10) 
AVE) AVEi RET, ^ a+b 

VAR SQ.BXAS„ n 
j M 

.00198 .00003 .02 1/5 

.00595 .00030 .05 1 

.00205 .00018 .09 i 

.00794 .00053 .07 2 

.00273 .00044 .16 2 

.00307 .00068 .22 3 

.00351 .00110 .31 6 

.00183 .00002 .01 .12 

.00285 .00004 .01 1/5 

.00052 .00001 .02 1/6 

.00427 .00010 .02 1/3 

.00041 .00001 .02 1/2 

.00641 .00025 .04 3/5 

.00137 .00007 .05 3/5 

.00061 .00004 .07 1 

.00182 .00016 .09 1 

.00932 .00060 .06 6/5 

.00228 .00034 .15 5/3 

.00082 .00013 .16 2 

.00092 .00023 .25 3 

.00273 .00070 .26 3 

.00312 .00137 .44 6 

.00105 .00056 .53 6 

.00071 .00003 .04 1/5 
•00107 .00007 .07 1/3 
.00049 .00002 .04 1/2 
.00153 .00017 .11 5/9 
.00074 .00008 .11 1 
.00214 .00046 .21 1 
.00098 .00026 .26 2 
.00286 .00127 .44 2 
.00111 .00050 .46 3 

a 
a+b 

(4.8) 
AVE j 

SQ.BIAS* 

1/2 
1/2 
1/2 
1/2 
1/2 
1/2 
1/2 

.00001 

.00011 

.00004 

.00022 

.00012 

.00020 

.00041 

(4.10) 
REL* 

.00 

.02 

.02 

.03 

.04 

.07 

.12 

1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 

1/3 
1/3 
1/3 
1/3 
1/3 
1/3 
1/3 

1/3 
1/3 

.00000 .00 

.00001 .00 

.00000 .00 

.00003 .01 

.00000 .01 

.00007 .01 

.00002 .01 

.00001 .02 

.00004 .02 

.00017 .02 

.00008 .04 

.00003 .04 

.00005 .05 

.00018 .07 

.00037 .12 

.00014 .13 

1/10 
1/10 
1/10 
1/10 
1/10 
1/10 
1/10 
1/10 
1/10 

.00001 

.00002 

.00001 

.00004 

.00002 

.00010 

.00006 

.00029 

.00011 

.01 

.02 

.02 

.03 

.03 

.05 

.06 

. 10 

. 10 

cases with A - 0.8, c-.5, d-2 

8 54 120 .00049 .00002 
^ 27 54 .00104 .00006 
2 18 36 .00153 .00009 
° 54 60 .00074 .00008 
2 18 20 .00214 .00020 
° 54 30 .00098 .00019 

2 18 10 .00286 .00045 
6 54 20 .00111 .00030 

.04 

.06 

.06 

. 1 1 

.09 

. 19 

.16 

.27 

1/2 1/10 
5/9 1/10 
5/9 1/10 

1 1/10 
1 1/10 
2 1/10 
2 1/10 
3 1/10 
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Table 3. 

Comparison of relative extra losses (sections 4 and 5) and embarassment 

(section 6). Quantities without a star denote the choice c d 2, A - 0.8, 

and quantities with a star c=d=l, A = 0.95; for (6.3) see text. 

L 


