Detecting causal information flows

Nudge causality

Rick Quax, Assistant Professor in Computational Science Lab; Research Fellow in Institute of Advanced Studies

Research focus: emergent dynamics

Complex Systems

- Neuronal network
- Ant colony
- Immune system
- Financial market
- Cell regulation
- Crowd, flock
- Social network
- Ecosystem

Computational

- Coral colony
- Bacterial colony

Emergent phenomena

- Phase transitions
- Self-organized criticality
- Tipping points
- Sensitivity/robustness
- Adaptation/learning
- Pattern formation
- Multistability
- Evolution

Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Shannon's communication channel

Everything is information (?)

Noise

Large scales Small scales

Large processing unit

Basics of information theory

$$H(X) = -\sum_{X=x} p(x) \log p(x)$$
 "Entropy"

$$I(X:Y) = \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)},$$
 "Mutual information"

$$= H(X) - H(X|Y).$$
H(X) H(X) H(X) H(Y) H(Y)

 $H(X|Y) \qquad H(X;Y) \qquad H(Y|X) \qquad H(Y|X) \qquad H(X,Y)$

cience Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Computational

From probabilistic causal relationship to information flow **BASIC IDEA**

Probabilistic causal relation

Probabilistic causal relation

Kullback-Leibler divergence \rightarrow Mutual information

$$\mathbf{E}_{A} \left[D_{\mathrm{KL}} \left(\Pr \left(B \mid A = a \right) \| \Pr \left(B \right) \right) \right] = I \left(A : B \right)$$

Causality \rightarrow information flow

Science Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Computational

TOWARDS NETWORKS

Chain of interactions

How far can information travel?

Information dissipation length

cience Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Computational

Information dissipation length

$$I(X_1:X_1) = 1 \longrightarrow I(X_1:X_2) = f \longrightarrow I(X_1:X_3) = f^2 \longrightarrow \cdots$$

When is
$$f^n = \frac{1}{2}$$
?

cience Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Computational

Information dissipation length

Towards networks

The diminishing role of hubs in dynamical processes on complex networks

Rick Quax¹^{\uparrow}, Andrea Apolloni^{2,†} and Peter M. A. Sloot^{1,3,4}

- Locally tree-like (i.e., no short loops)
- Any degree distribution

Generalized energy function

 $p(s_i^{t+1} = x | s_j^t, ...) \propto \exp \sum_{i} -E(x, s_j^t)$

nformation dissipation time

halftime of decay:

 $\Delta_i: I\left(x_i^t: X^{t+\Delta_i}\right) = \frac{1}{2}H\left(x_i^t\right)$

Not the *influentials* but the man in the street drives behavior

Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

From shared information to causal information flow?

TOWARDS CAUSAL DISCOVERY

work in progress

Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Context

- Type of interactions:
- Work presented:
- Time-series:

- Depends on a 'do':
- Type of values

- Any (non-linear)
- New and unknown (!)
- Local *and* global stationarity ('long') / cross-section ('many')
 + nudge variable
- Yes
- Discrete

Computational Science Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Information flow: causal?

'Do' something!

Intuition: stay as close as possible to original system dynamics

Nudging a *causal* relation

start:
$$I(A:B) = \sum_{a} \Pr(a) \sum_{b} \Pr(b|a) \log \frac{\Pr(b|a)}{\Pr(b)}$$
.

$$do(A): Pr'(a) = Pr(a) + \varepsilon_a$$

$$Pr'(b) = \sum_a Pr(b|a) Pr'(a) \quad \text{(if fully causal)}$$

$$= Pr(b) + \sum_a \varepsilon_a Pr(b|a) \quad \text{(if fully causal)}$$

$$\equiv Pr(b) + i_b$$

Science Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

Nudging a causal relation

$$I(A':B') = \sum_{a} \Pr(a) \sum_{b} \Pr(b|a) \log \frac{\Pr(b|a)}{\Pr'(b)}.$$

$$I(A':B') = \sum_{a} \Pr(a) \sum_{b} \Pr(b|a) \left[\log \Pr(b|a) - \log \left(\Pr(b) + i_{b}\right) \right].$$

$$I(A':B') = \sum_{a} \Pr'(a) \sum_{b} \Pr(b|a) \left[\log \Pr(b|a) - \log \Pr(b) - \log \left(1 + \frac{i_{b}}{\Pr(b)}\right) \right].$$

$$I(A':B') = \sum_{a} \Pr'(a) \sum_{b} \Pr(b|a) \left[\log \Pr(b|a) - \log \Pr(b) - \log \left(1 + \frac{i_{b}}{\Pr(b)}\right) \right].$$

•

where
$$\sigma(a) \equiv \sum_{b} \Pr(b|a) \log \frac{\Pr(b|a)}{\Pr(b)}$$

("specific surprise")

'Causal information'?

Nudging a *non-causal* relation

start:
$$I(A:B) = \sum_{a} \Pr(a) \sum_{b} \Pr(b|a) \log \frac{\Pr(b|a)}{\Pr(b)}$$
.

$$do(A)$$
:

$$\begin{aligned} \Pr'(a) &= \Pr(a) + \varepsilon_a, \\ \Pr'(b) &= \Pr'(b), \end{aligned} \qquad (if fully non-causa) \\ \Pr'(b|a) &= \Pr(b|a) + \Delta_{b|a}. \end{aligned} \qquad (if fully non-causa) \end{aligned}$$

I)

I)

Definition of non-causal info.

$$do(A)$$

$$\downarrow$$

$$I(A':B')-I(A:B) =$$

$$\sum_{a} p_{a} \sum_{b} \Delta_{b|a} \cdot \sigma_{b|a} + \sum_{a} p_{a} \sum_{b} \frac{\Delta_{b|a}^{2}}{p_{b|a}} + \sum_{a} \varepsilon_{a} \sum_{b} \Delta_{b|a} \cdot \sigma_{b|a} + \sum_{a} \varepsilon_{a} \cdot \sigma_{a} + \sum_{a} \varepsilon_{a} \sum_{b} \frac{\Delta_{b|a}^{2}}{p_{b|a}}.$$

where
$$\sigma(a) \equiv \sum_{b} \Pr(b|a) \log \frac{\Pr(b|a)}{\Pr(b)}$$

Definition of non-causal info.

Causal versus non-causal MI

numvals=3, frac_mi=0.7, ntrials=10000, init_cond=uniform skew_causal=-0.727097849084 (CI -0.759640236419--0.695052179368) skew_noncausal=1.10600729204 (CI 1.06160942538-1.15168361129)

Information flows

• Before: Mixed MI • do(A_i): Flow + corr.

idea: $I_{\text{corr}}(A_1:B) + I_{\text{causal}}(A_1:B) \equiv I(A_1:B)$

Is it enough to control a single variable only? **SYNERGY**

Synergy

	X1	X2	Y
25%	0	0	0
25%	0	1	1
25%	1	0	1
25%	1	1	0

$$I(Y:X_1) = 0,$$

 $I(Y:X_2) = 0,$
 $I(Y:X_1,X_2) = 1.$

Rick Quax, Omri Har-Shemesh, Peter M. A. Sloot: Quantifying synergistic information using intermediate stochastic variables. *Entropy*, 2017

Computational Science Rick Quax: Computational Science, University of Amsterdam, The Netherlands. Quax, R.; Har-Shemesh, O.; Sloot, P.M.A. **Quantifying Synergistic Information Using Intermediate Stochastic Variables.** Entropy 2017, 19, 85.

http://www.mdpi.com/1099-4300/19/2/85

One-to-one causality?

Computational

Science Rick Quax: Computational Science, University of Amsterdam, The Netherlands.

So in multi-input causation...

Concluding remarks

- Mutual information measures causal effect of a nudge in 1-to-1 causation (if choosing KL-Div. as 'impact' measure)
- Nudging the system reveals 'causal MI'
- Local as opposed to global like Transfer Entropy or D-separation-like techniques
- Requirements:
 - slow nudging variable
 - Discrete

mputation Science

Lots of data

Rick Ouax:

• Synergy is important but often neglected

Current projects

- Diabetes type 2 (ZonMw)
- Criminal networks (RIEC)
- SocialHealth (Radboud)
- Alzheimer as a system (Radboud)
- Immune system failure (ITMO)
- Disease networks, interactome (EU)
- Information processing in neural networks
- Information theory meets causality

