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Research focus: emergent dynamics

Complex Systems

• Neuronal network

• Ant colony

• Immune system

• Financial market

• Cell regulation

• Crowd, flock

• Social network

• Ecosystem

• Coral colony

• Bacterial colony

Emergent phenomena

• Phase transitions

• Self-organized
criticality

• Tipping points

• Sensitivity/robustness

• Adaptation/learning

• Pattern formation

• Multistability

• Evolution
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Shannon’s communication channel

The Mathematical Theory of Communication, 
Shannon & Weaver, 1949.
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Everything is information (?)



Rick Quax: Computational Science,  University of Amsterdam, The Netherlands.

Basics of information theory
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BASIC IDEA
From probabilistic causal relationship to information flow
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Probabilistic causal relation

A B
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Probabilistic causal relation
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Kullback-Leibler divergence  Mutual information
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Causality  information flow

Variable A

Causal
relation

Variable B

P(B|A)

A B

“Entropy” “Mutual information”
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TOWARDS NETWORKS
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Chain of interactions

A B C

…

p p p

…
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How far can information travel?
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Information dissipation length
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Information dissipation length
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Information dissipation length
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Influence length → instability
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Towards networks

• Locally tree-like (i.e., no short loops)

• Any degree distribution
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halftime of decay:
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Not the influentials but the 
man in the street drives behavior
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Driver nodes?

To be published
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TOWARDS CAUSAL DISCOVERY
From shared information to causal information flow?

work in progress
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Context

• Type of interactions:

• Work presented:

• Time-series:

• Depends on a ‘do’:

• Type of values

• Any (non-linear)

• New and unknown (!)

• Local and global
stationarity (‘long’) / 
cross-section (‘many’) 
+ nudge variable

• Yes

• Discrete
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Information flow: causal?
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BA
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‘Do’ something!
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‘Do’: Nudging
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0 1

 Pr B
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0 1
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 do A bi

Intuition: stay as close as possible to original system dynamics



Rick Quax: Computational Science,  University of Amsterdam, The Netherlands.

Nudging a causal relation
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  :do A

(if fully causal)

(if fully causal)

start:
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Nudging a causal relation
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‘Causal information’?
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‘Causal information’?
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Nudging a non-causal relation
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  :do A

(if fully non-causal)

(if fully non-causal)

start:
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Definition of non-causal info.
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Definition of non-causal info.
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Definition of non-causal info.
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Causal versus non-causal MI
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Information flows

• Before: Mixed MI • do(Ai): Flow + corr.

1A

B

2A

 1 :I A B

 2 :I A B
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     corr 1 causal 1 1idea:  : : :I A B I A B I A B 



Rick Quax: Computational Science,  University of Amsterdam, The Netherlands.

Simulated ime-series data

I I
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10k points1k
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Elements of nudge vector εa
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SYNERGY
Is it enough to control a single variable only?
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Synergy

1A

B

2A

X1 X2 Y

0 0 0

0 1 1

1 0 1

1 1 0

25%

25%

25%

25%

Rick Quax, Omri Har-Shemesh, Peter M. A. Sloot: Quantifying synergistic
information using intermediate stochastic variables. Entropy, 2017
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Synergistic information
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http://www.mdpi.com/1099-4300/19/2/85

Quax, R.; Har-Shemesh, O.; Sloot, P.M.A. Quantifying 
Synergistic Information Using Intermediate Stochastic 
Variables. Entropy 2017, 19, 85. 

http://www.mdpi.com/1099-4300/19/2/85
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One-to-one causality?

1X

Y2X

3X

Derk-Jan Riesthuis

(In preparation.)

…
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So in multi-input causation…

= ImportantSynergy
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Concluding remarks

• Mutual information measures causal effect of a nudge in 
1-to-1 causation (if choosing KL-Div. as ‘impact’ measure)

• Nudging the system reveals ‘causal MI’

• Local as opposed to global like Transfer Entropy
or D-separation-like techniques

• Requirements: 
– slow nudging variable

– Discrete

– Lots of data

• Synergy is important but often neglected

Software: https://bitbucket.org/rquax/jointpdf
https://github.com/cvanelteren/information_impact

https://bitbucket.org/rquax/jointpdf
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Current projects

• Diabetes type 2 (ZonMw)

• Criminal networks (RIEC)

• SocialHealth (Radboud)

• Alzheimer as a system (Radboud)

• Immune system failure (ITMO)

• Disease networks, interactome (EU)

• Information processing in neural networks

• Information theory meets causality


