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Many questions in science are causal

Climatology:

Economy:

Neuroscience:
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Probabilistic inference vs. causal inference

Traditional statistics, machine learning

Models the distribution of the data

Focuses on prediction from observations

Useful e.g. in medical diagnosis: given the symptoms of the patient,
what is the most likely disease?

Causal modeling, reasoning, learning, inference

Models the mechanism that generates the data

Also allows to predict results of interventions

Useful e.g. in medical treatment: if we treat the patient with a drug,
will it cure the disease?

Causality is essential to answer questions of the type: given the
circumstances, what action should we take to achieve a certain goal?

Joris Mooij (KdVI, UvA) Presentation VVS-OR 2020-03-12 3 / 55



Causation or just correlation?

Source: Messerli, New England Journal of Medicine (2012)

Should NWO fund chocolate for researchers?
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How to formalize, model, estimate and exploit causality?

Intuition

Let A and B be two variables of a system.

A causes B if external interventions that change A result in a
change of B.

But. . .

How to model causality mathematically?

How to model causality and uncertainty (statistical causal modeling)?

How to discover causal relations from data?

How to estimate the strength of causal relations from data?

How to use knowledge of the causal relations for making predictions?

How to exploit knowledge of the causal relations for control and
optimization purposes?
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Part I

Statistical Causal Modeling
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Statistical Causal Modeling

Given a standard measurable space (X ,Σ).

Definition (sketch)

A statistical model is a family of probability distributions: θ 7→ Pθ(·)
where Pθ is a probability measure on X for each parameter value θ ∈ Θ.

We need to add more structure to model causality.

Definition (sketch)

A statistical causal model is a family of statistical models, indexed by
interventions:

(I ,θ) 7→ Pθ

(
· | do(I )

)
Here, I ∈ I represents an external intervention on a system. Modeling
causality is done by imposing relationships on members of the family.

This enables us to model how probability distributions of system variables
change under external interventions on the system.
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Statistical Causal Modeling with Structural Causal Models

Acyclic/Simple SCM

Intervened SCM Interventional DistributionIntervened SCM Interventional DistributionIntervened SCM Interventional Distribution

Marginal SCM

Augmented Graph

Graph

d/σ-separations

Latent Confounders

Direct Causes
Solutions

Causal RelationsObservational Distribution

(Conditional) Independences

Markov
Property

Faithfulness
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Structural Causal Models: Definition

Definition ([Wright, 1921, Strotz and Wold, 1960, Pearl, 2000])

A Structural Causal Model (SCM), also known as Structural Equation
Model (SEM), is a tuple M = 〈I,J ,X ,E, f ,PE〉 with:

1 a product of standard measurable spaces X =
∏

i∈I Xi

(domains of the endogenous variables)

2 a product of standard measurable spaces E =
∏

j∈J Ej
(domains of the latent exogenous variables)

3 a measurable mapping f : X × E → X
(the causal mechanisms)

4 a product probability measure PE =
∏

j∈J PEj on E
(the latent exogenous distribution)

Definition ([Bongers et al., 2016])

A pair of random variables (X ,E ) ∈ X × E is a solution of SCM M if
E ∼ PE and the structural equations X = f (X ,E ) hold a.s..
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Structural Causal Models: Example

Example

Augmented graph Ga(M):

X1X2

X3 X4

X5

E1E2

E3

E4

Graph G(M):

X1X2

X3 X4

X5

Structural Causal Model M:

Formally:

〈I,J ,X ,E, f ,PE〉 =
〈{1, . . . , 4}, {1, . . . , 5},
R4,R5, (f1, . . . , f5),

∏4
j=1 PEj 〉

Informally:

E1 ∼ PE1 X1 = f1(E1)
E2 ∼ PE2 X2 = f2(E1,E2,E3)
E3 ∼ PE3 X3 = f3(X1,X2,X5,E3)
E4 ∼ PE4 X4 = f4(X1,X4,E4)

X5 = f5(X3,X4)
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Interventions on a Structural Causal Model: Definition

To interpret an SCM as a statistical causal model, we also need to define
its semantics under interventions.

Definition (Perfect Interventions [Pearl, 2000])

Let M be an SCM, I ⊆ I a subset of endogenous variables (“intervention
targets”) and ξI ∈ X I a value (“intervention values”). The intervened
SCM Mdo(XI =ξI ) is the same as M, except with a modified causal

mechanism f̃ with components f̃i : X × E → Xi :

f̃i (x , e) =

{
ξi i ∈ I

fi (x , e) i /∈ I .

Interpretation: The perfect intervention do(XI = ξI ) enforces XI to
attain value ξI by completely overriding the default causal mechanisms
that normally determine the values of the intervened variables, while
leaving the other causal mechanisms invariant.
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Interventions on a Structural Causal Model: Example

Example

Observational (no intervention):
Graph G(M):

X1X2

X3 X4

X5

SCM M:

E1 ∼ PE1 X1 = f1(E1)
E2 ∼ PE2 X2 = f2(E1,E2,E3)
E3 ∼ PE3 X3 = f3(X1,X2,X5,E3)
E4 ∼ PE4 X4 = f4(X1,X4,E4)

X5 = f5(X3,X4)

Intervention do(X3 = ξ3):
Intervened graph G(Mdo(X3=ξ3)):

X1X2

X3 X4

X5

Intervened SCM Mdo(X3=ξ3):

E1 ∼ PE1 X1 = f1(E1)
E2 ∼ PE2 X2 = f2(E1,E2,E3)
E3 ∼ PE3 X3 = ξ3

E4 ∼ PE4 X4 = f4(X1,X4,E4)
X5 = f5(X3,X4)
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Causal cycles: Toy example

In many dynamical systems, feedback loops induce cyclic causality at
equilibrium [Bongers and Mooij, 2018].

Example (Damped Coupled Harmonic Oscillators)

Two masses, connected by a spring, suspended from
the ceiling by another spring.

Variables: vertical equilibrium positions Q1 and Q2.

Q1 causes Q2.

Q2 causes Q1.

Causal graph:

Q1 Q2

Cannot be modeled with acyclic causal model!

Q1

Q2

In time-series modeling, fast dynamical interactions can also lead to
“instantaneous” causal cycles.
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Acyclic Structural Causal Models

Acyclic/Simple SCM

Intervened SCM Interventional DistributionIntervened SCM Interventional DistributionIntervened SCM Interventional Distribution

Marginal SCM

Augmented Graph

Graph

d/σ-separations

Latent Confounders

Direct Causes

Causal Relations

Solutions

Observational Distribution

(Conditional) Independences

Markov
Property

Faithfulness

An SCM M is called acyclic if its graph G(M) is acyclic.

Note: everything can be generalized to the class of simple SCMs (which can be cyclic).
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Structural Causal Model as Statistical Causal Model

Remark

Let M be an acyclic SCM. Then M induces a statistical causal model:

For each perfect intervention, we obtain a unique distribution

PMdo(XI =ξI )
(X ) =: PM(X | do(XI = ξI ))

for solutions (Xdo(XI =ξI ),E ) of Mdo(XI =ξI ).

The “parameters” are the causal mechanism f and the latent
exogenous distribution PE .

Note that the SCM “ties together” all interventional distributions:

M Mdo(XI =ξI )

PM PMdo(XI =ξI )

intervention

induced distribution induced distribution
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Causal Interpretation of the Graph of an SCM

The graph G(M) of an acyclic SCM M can be interpreted causally:

Pattern in Graph Causal interpretation

i → j i is a direct cause of j
i1 → i2 → · · · → in i1 is a cause of in
i ↔ j i and j are confounded

We then refer to it as the causal graph.
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d-separation

Definition (d-separation [Pearl, 2000])

In an ADMG G, a walk (i.e., a finite sequence of adjacent edges)

← ←
i1 → · · · → in↔ ↔

is called blocked by a set of nodes Z iff

one or both end nodes i1, in are in Z , or

it contains a collider ik−1
→
↔ ik

←
↔ ik+1 with ik 6∈ Z , or

it contains a non-collider with ik ∈ Z ,

For three sets of nodes A,B,Z , we say that A is d-separated from B by Z
in G, denoted A⊥G B |Z , if every walk that starts in A and ends in B is
blocked by Z .
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Cornerstone of causal reasoning: Markov Property

The Markov property allows one to read off conditional independences
between endogenous variables directly from the causal graph.

Theorem (Markov Property (d-separation criterion))

Let M be an acyclic SCM. Then, for any subsets A,B,Z ⊆ I of
endogenous variables:

A ⊥
G(M)

B |Z =⇒ XA ⊥⊥
PM

XB |XZ

i.e., if A is d-separated from B by Z in G(M) then A is conditionally
independent of B given Z in PM.

Important consequences of the Markov Property are:

Pearl’s do-calculus [Pearl, 2000]

Adjustment criteria for estimating causal effects [Pearl, 2000]

Identification algorithm for identifying causal effects [Tian, 2002]
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Faithfulness and Occam’s razor

Definition

An acyclic SCM M is called faithful if the converse of the Markov
Property also holds, i.e., if

A ⊥
G(M)

B |Z ⇐= A ⊥⊥
PM

B |Z

for all subsets A,B,Z ⊆ I.

For certain classes of SCMs, faithfulness has been shown to hold
generically [Meek, 1995].

The faithfulness assumption, often used in causal discovery, provides a
particular form of Occam’s razor.
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Part II

Causal Discovery:

Estimating the Causal Graph from Data

1 Randomized Controlled Trials

2 Purely Observational Data

3 Exploiting Background Knowledge
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Causal discovery by experimentation

Experimentation (e.g., Randomized Controlled Trials, A/B-testing, . . . )
provides the gold standard for causal discovery (Fisher, 1935).
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Two equivalent points of view

(a) Separate data sets

Two-sample test:

Is P(X |C = 0) = P(X |C = 1)?

Control (C = 0):
X

-0.2
0.6
-1.7
. . .

Intervention (C = 1):
X

-0.3
1.8
-0.1
. . .

(b) Pooled data

Independence test:

Is X ⊥⊥ C?

C X
0 -0.2
0 0.6
0 -1.7
0 . . .
1 -0.3
1 1.8
1 -0.1
1 . . .
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Understanding Randomized Controlled Trials with SCMs

Proposition (“In RCTs, correlation implies causation”)

For an acyclic SCM M with two variables {C ,X}, the RCT assumptions

C ← X /∈ G(M) (“outcome does not cause treatment”)

C ↔ X /∈ G(M) (“outcome and treatment are unconfounded”)

imply that if C 6⊥⊥ P(M) X , then C → X ∈ G(M). The causal effect of C
on X is then:

PM
(
X | do(C = c)

)
= PM(X |C = c).

Proof

C X C X C X

C X C X C X
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Part III

Causal Discovery:

Estimating the Causal Graph from Data

1 Randomized Controlled Trials

2 Purely Observational Data

3 Exploiting Background Knowledge
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Causal discovery from purely observational data

Intriguing alternative: causal discovery from purely observational data
(Spirtes & Gleimour & Scheines (2000), Pearl (2000), . . . )

No more experiments necessary. . . ! Two approaches:

Constraint-based

Look for certain patterns of (conditional) independences in data, which
constrain the possible causal graphs.

Likelihood-based

Score likelihoods of different causal graphs and select the best one(s).

Disclaimer: Works only under strong assumptions and with (possibly
very) large sample sizes.
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Constraint-based Causal Discovery

From the pattern of conditional independences in the data we can
reconstruct a set of possible underlying causal graphs, even when allowing
for latent confounders (Spirtes, Gleimour, Scheines; 2000).

X1 X2 X3 X4

2 0.1 0.2 0.5
2 0.13 0.21 0.49
2 0.23 0.21 0.51
5 0.5 0.19 0.52
5 0.6 0.18 0.51
2 0.2 0.22 0.92
2 0.23 0.21 0.99
5 0.53 1.2 0.95
5 0.55 1.19 0.97

Data

X2 6⊥⊥ X4

X2 ⊥⊥ X4 |X3

X1 ⊥⊥ X2

X1 6⊥⊥ X2 |X3

. . .

CIs
X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

X1 X2

X3

X4

Possible Causal Graphs
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Hardness of Causal Discovery

ASD [Hyttinen et al., 2014] solves the inverse problem (from conditional
independences to causal graph) by a general-purpose optimizer, taking
into account the strength of the dependences.

Appendix B. Causal Orderings and Adjacency Matrices 223

d Number of DAGs with d nodes
1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265
8 783702329343
9 1213442454842881
10 4175098976430598143
11 31603459396418917607425
12 521939651343829405020504063
13 18676600744432035186664816926721
14 1439428141044398334941790719839535103
15 237725265553410354992180218286376719253505
16 83756670773733320287699303047996412235223138303
17 62707921196923889899446452602494921906963551482675201
18 99421195322159515895228914592354524516555026878588305014783
19 332771901227107591736177573311261125883583076258421902583546773505

Table B.1: The number of DAGs depending on the number d of nodes, taken from http:

//oeis.org/A003024 [OEIS Foundation Inc., 2017]. The length of the numbers grows
faster than any linear term.

Source: Peters, Janzing & Schölkopf (2017)

The combinatorial explosion is even worse when allowing for confounders
and cycles!
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Constraint-based Causal Discovery Algorithm

The (Augmented) FCI algorithm [Spirtes et al., 2000, Spirtes et al., 1999,
Ali et al., 2005, Zhang, 2008] is one of the “classical” algorithms:

Source: [Claassen & Heskes, 2011]
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Part IV

Causal Discovery:

Estimating the Causal Graph from Data

1 Randomized Controlled Trials

2 Purely Observational Data

3 Exploiting Background Knowledge
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Local Causal Discovery (LCD)

Theorem ([Cooper, 1997])

Let M be an acyclic, faithful SCM. If for three endogenous variables
i , j , k ∈ I:

Xj and Xk do not cause Xi ,

Xi 6⊥⊥ Xj and Xj 6⊥⊥ Xk ,

Xi ⊥⊥ Xk |Xj ,

then Xj causes Xk and P
(
Xk | do(Xj = xj)

)
= P(Xk |Xj = xj).
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Local Causal Discovery (LCD)

Theorem ([Cooper, 1997])

Let M be an acyclic, faithful SCM. If for three endogenous variables
i , j , k ∈ I:

Xj and Xk do not cause Xi ,

Xi 6⊥⊥ Xj and Xj 6⊥⊥ Xk ,

Xi ⊥⊥ Xk |Xj ,

then Xj causes Xk and P
(
Xk | do(Xj = xj)

)
= P(Xk |Xj = xj).

Proof.

The only possible causal graphs of the marginalized M{i ,j ,k} are:

Xi Xj Xk Xi Xj Xk Xi Xj Xk

Now apply the do-calculus.
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Part V

A Unifying Framework: Joint Causal Inference
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Joint Causal Inference: the main idea

JCI generalizes the idea of RCTs to multiple context and system variables.
Distinguish:

System variables {Xi}i∈I that model the system of interest.

Context variables {Ck}k∈K that model the context of the system,

Main idea

JCI reduces modeling a system in its environment to modeling the
meta-system consisting of the system and its environment:

system

context

meta-system

C1 C2

X1

X2 X3
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JCI Assumptions

The boundary between system and context is chosen by the modeler. We
assume that the context variables are observed and exogenous while the
system variables are endogenous.

JCI Assumptions

The causal graph G(M) that includes both system variables {Xi}i∈I and
context variables {Ck}k∈K, which jointly models the system and its
environment, satisfies:

1 Ck ← Xi /∈ G(M) for all k ∈ K, i ∈ I (“the system does not affect its
context”), and

2 Ck ↔ Xi /∈ G(M) for all k ∈ K, i ∈ I (“context and system are
unconfounded”).

The second assumption is optional because it can be violated if the
context is not complete and no randomization has been performed.
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Joint Causal Inference

Question: How to estimate the causal graph from the data?

context variables system variables
C1 C2 X1 X2 X3

0 2 0.1 0.2 0.5
0 2 0.13 0.21 0.49
0 2 0.23 0.21 0.51

0 5 0.5 0.19 0.52
0 5 0.6 0.18 0.51

1 2 0.2 0.22 0.92
1 2 0.23 0.21 0.99

1 5 0.53 1.2 0.95
1 5 0.61 1.21 0.90
1 5 0.55 1.19 0.97

pooled data
X1 6⊥⊥ C1

X1 ⊥⊥ C1 |C2

X3 ⊥⊥ X2 |X1

C1 6⊥⊥ C2

. . .

CIs

C1 C2

X1 X2 X3

JCI Assumptions

+
C1 C2

X1

X2 X3

causal graphs

Answer: Simply apply a standard constraint-based causal discovery
method (designed for purely observational data) on the pooled data, and
incorporate the JCI assumptions.
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Implementing JCI

The following algorithms can be seen as causal discovery algorithms
implementing special cases of the JCI framework:

Method #{K} #{I}
FCI 0 ≥ 2
ASD 0 ≥ 2

RCT 1 1
LCD 1 2
ICP 1 ≥ 2

Novel methods [Mooij et al., 2020]:

Method #{K} #{I}
ASD-JCI ≥ 0 ≥ 2
FCI-JCI ≥ 0 ≥ 2
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Evaluation on simulated data (I)

Random SCMs with 4 system variables, 2 context variables, random parameters,
linear-Gaussian distribution, imperfect unknown interventions. Task: discover
causal relations between system variables.

JCI outperforms purely observational discovery substantially.
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Evaluation on simulated data (II)

Increasing the number of observational samples does not help much
(shown here: performance of ASD):

(Also, note that RCTs are not applicable.)
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Evaluation on simulated data (III)

ASD-JCI with more context variables (Nc = 500 samples for each context)
helps considerably:

Perturbing the system is extremely helpful for understanding it.
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Part VI

Validation on real-world data
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Understanding Protein Signaling

Protein Abundance Data:
(Sachs et al, 2005)

1
2

3
4

5
6

7
8

Raf Mek PLCg PIP2 PIP3 Erk Akt PKA PKC p38 JNK

Condition Reagent Intervention
1 - observational
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 inhibits PIP2/PIP3 activity
7 PMA activates PKC + global
8 β2CAMP activates PKA + global

Causal Graph:
(“Signalling network”)

Raf

Mek

Erk

Plcg

PIP2

PKC

PIP3

Akt

PKA

P38Jnk

(depicted here: “consensus” network)
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Application of FCI and FCI-JCI

Raf

Mek

PLCg PIP2

PIP3

Erk

Akt

PKA

PKC

p38 JNK

Only observational data (FCI):

Raf

MekPLCg

PIP2

PIP3

Erk

Akt

PKA PKC

p38

JNK

AKT.inhG0076

Psitectorigenin

U0126LY294002 PMA/beta2CAMP + noAlphaCD3/28

R

All data (FCI-JCI):
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Gene Regulatory Network = Causal Graph

Source: [Kemmeren et al., 2014]
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Causal Discovery of Gene Regulatory Networks

observational:
(wild-type vs. wild-type):

genes

sa
m

p
le

s

interventional:
(mutant vs. wild-type):

genes

k
n

o
ck

o
u

ts

? ? ? ? ? ?

Large-scale Single Gene Knockout Micro-Array
Data [Kemmeren et al., 2014]:

∼6,500 variables (gene expression)

∼260 observational samples (wild-type
vs. wild-type)

∼1,500 interventional samples
(single-gene knockouts/knockdowns)

Challenge

Can we, in a purely data-driven way (without
using biological knowledge), predict which
genes strongly change their expression when
we knock-out a given gene (without using any
data corresponding to that particular
knock-out experiment)?
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genes

sa
m

p
le

s

interventional:
(mutant vs. wild-type):

genes
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? ? ? ? ? ?

Large-scale Single Gene Knockout Micro-Array
Data [Kemmeren et al., 2014]:

∼6,500 variables (gene expression)

∼260 observational samples (wild-type
vs. wild-type)

∼1,500 interventional samples
(single-gene knockouts/knockdowns)

Challenge

Can we, in a purely data-driven way (without
using biological knowledge), predict which
genes strongly change their expression when
we knock-out a given gene (without using any
data corresponding to that particular
knock-out experiment)?
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Causation or correlation?

True positive: False positive:
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(Training data: Observational and Interventional. Test data: single intervention.)

Idea: introduce binary context variable (C = 0: observational; C = 1:
interventional). JCI Assumption 1 seems justified, so apply LCD or ICP.
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Beyond RCTs: First successful large-scale validation
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Prediction Error (Internal Validation), SGD DB (External Validation)

ICP: [Meinshausen et al., 2016];
LCD: HD-LCD [Versteeg and Mooij, 2019]
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Part VII

Extensions for Cycles
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Extensions to the cyclic case

The whole theory can be extended to allow for cycles. Major complication:

Complication

For cyclic SCMs, induced distributions may not exist or may not be
unique, and this may change under interventions [Bongers et al., 2016].

We introduced the class of simple SCMs and showed that for this class, we

get a generalized Markov property (replacing d-separation with
σ-separation) [Forré and Mooij, 2017]

retain a causal interpretation of the graph [Bongers et al., 2016];

can define marginalized SCMs [Bongers et al., 2016];

get a generalized do-calculus, adjustment criteria and identifiability
algorithm [Forré and Mooij, 2019];

can easily generalize causal discovery algorithms (RCT, ASD, LCD,
ICP, FCI) [Forré and Mooij, 2018, Mooij et al., 2020];

the JCI framework still applies [Mooij et al., 2020].
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Conclusion

Causality is an important notion in daily life and in science, but
underexplored in statistics and machine learning.

We discussed three approaches to causal discovery:

Randomized Controlled Trials (A/B-testing), the gold standard.

Constraint-based causal discovery from purely observational data.

Approaches that also make use of causal background knowledge.

We introduced Joint Causal Inference, which:

generalizes the idea of RCT to multiple context and system variables;

does not require knowledge of the intervention targets and types;

allows to exploit the strong signal in (partially) experimental data;

proposed novel implementations (ASD-JCI, FCI-JCI);

also works in case of cycles (assuming simple SCMs).

For details, see https://arxiv.org/abs/1611.10351
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Take home message?

Source: xkcd.com

Thank you for your attention!
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Methods for causal inference from gene perturbation experiments and validation.
Proceedings of the National Academy of Sciences of the United States of America, 113(27):7361–7368.

Mooij, J. M., Magliacane, S., and Claassen, T. (2020).

Joint causal inference from multiple contexts.
arXiv.org preprint, https://arxiv.org/abs/1611.10351v5 [cs.LG].
Forthcoming in Journal of Machine Learning Research.

Pearl, J. (2000).

Causality: Models, Reasoning, and Inference.
Cambridge University Press.

Joris Mooij (KdVI, UvA) Presentation VVS-OR 2020-03-12 52 / 55



References III

Strotz, R. and Wold, H. (1960).

Recursive vs. nonrecursive systems: An attempt at synthesis.
Econometrica, 28(2):417–427.

Tian, J. (2002).

Studies in Causal Reasoning and Learning.
PhD thesis, University of California, Los Angeles.

Versteeg, P. J. and Mooij, J. M. (2019).

Boosting local causal discovery in high-dimensional expression data.
arXiv.org preprint, arXiv:1910.02505v2 [stat.ML].
Accepted for publication in BIBM 2019.

Wright, S. (1921).

Correlation and causation.
Journal of Agricultural Research, 20:557–585.

Joris Mooij (KdVI, UvA) Presentation VVS-OR 2020-03-12 53 / 55



From SCMs to Potential Outcomes

We can connect SCMs to the potential outcome framework (popular in
the statistical literature):

Definition

Given a simple SCM M and let E ∼ PE . For any subset I ⊆ I and value
ξI , define the potential outcome XξI := gMdo(XI =ξI )

(E ).

Joris Mooij (KdVI, UvA) Presentation VVS-OR 2020-03-12 54 / 55



Why multiple context variables?

In general, one can learn more about a system when using multiple context
variables than when using a single one.

C

X1 X2 X3

Not identifiable

Cα Cβ Cγ

X1 X2 X3

Identifiable under JCI Assumptions 1,2
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