
Checking Robustness in 4 Steps

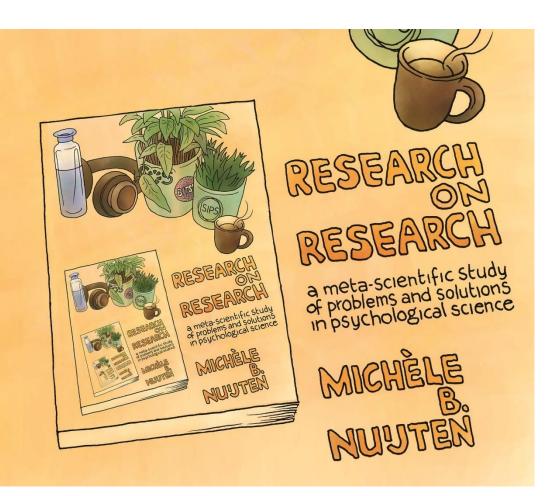
Dr. Michèle B. Nuijten

Sounds like Newton/Nowton

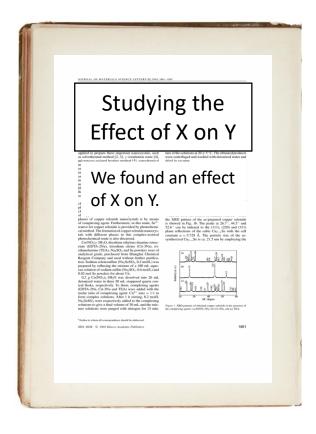
@MicheleNuijten

m.b.nuijten@uvt.nl

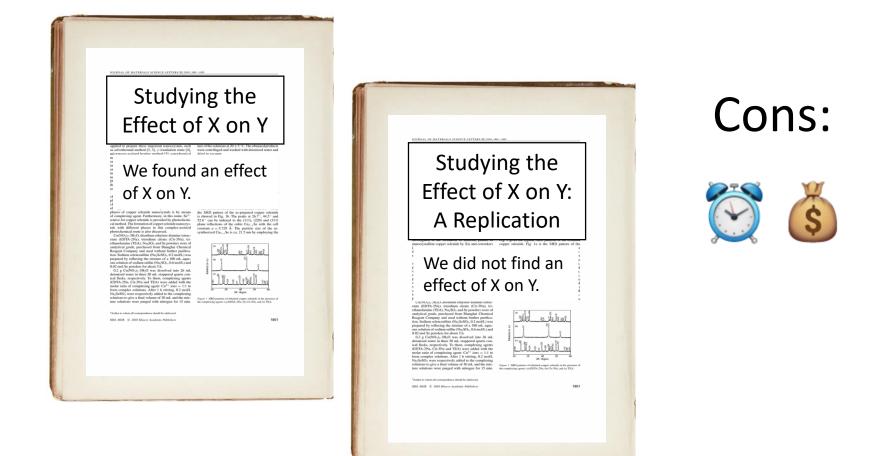
http://mbnuijten.com



My background.


Tilburg School of Social and Behavioral Sciences

Today.

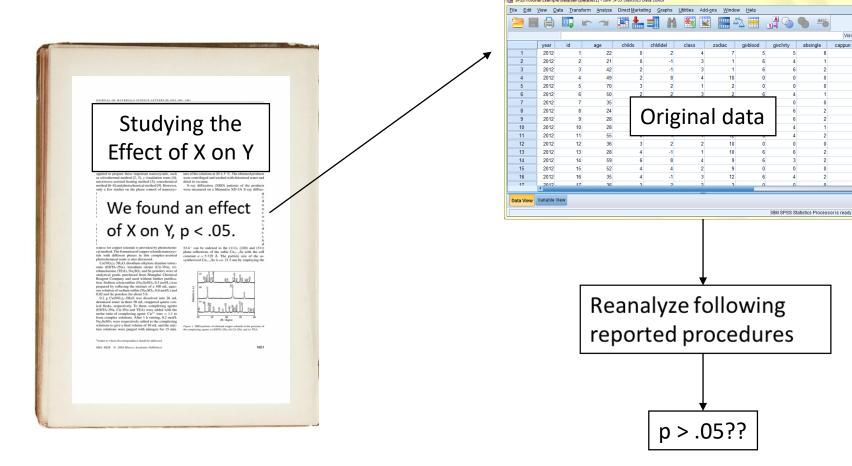

Assessing and **improving** robustness of psychological science in 4 steps (while using minimal resources).

Robustness.

Robustness ≈ "Can I trust this result?"

Assessing robustness through replication?

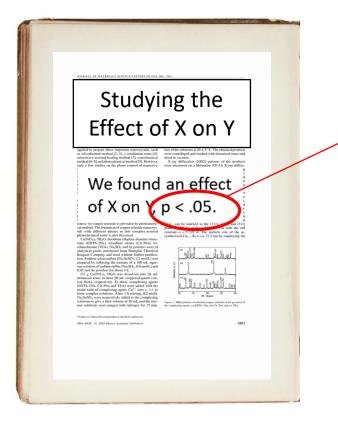
Focus on **reproducibility** first.


Replicability

A study is successfully **replicated** if the same/a similar result is found in a new sample.

Reproducibility

A study is successfully **reproduced** if independent reanalysis of the original data, using the same analytic approach, leads to the same results.


Reproducibility is a prerequisite for replicability.

- O X

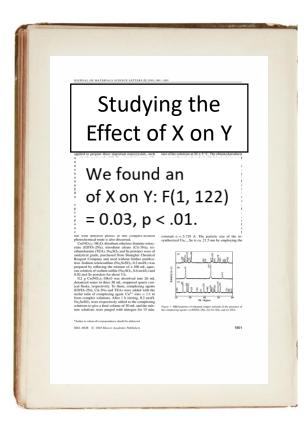
Visible: 12 of 12 Variable

Reproducibility is a prerequisite for replication.

- If a result is not reproducible, it has no clear bearing on theory or practice
- An irreproducible number is effectively meaningless

You don't need replication to find out whether this finding is robust. It's not.

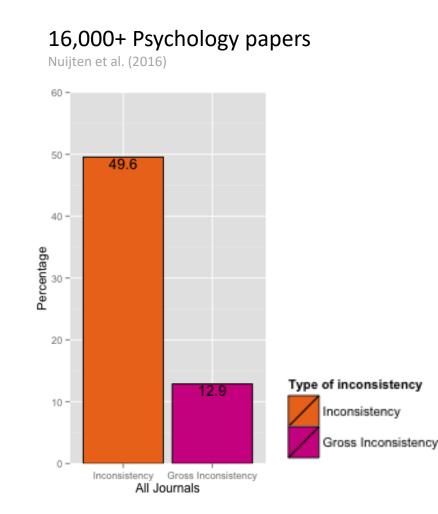
Today.

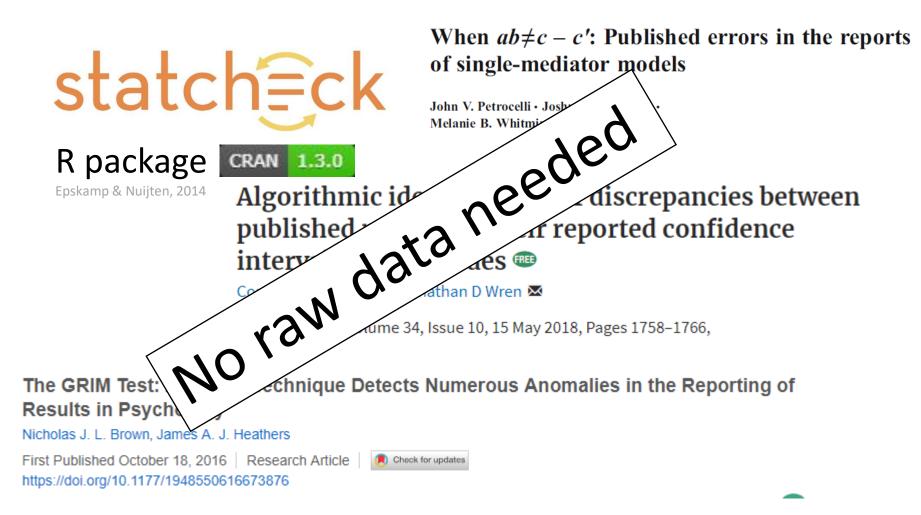

Assessing and **improving** robustness of psychological science in 4 steps (while using minimal resources).

The 4-Step Robustness Check

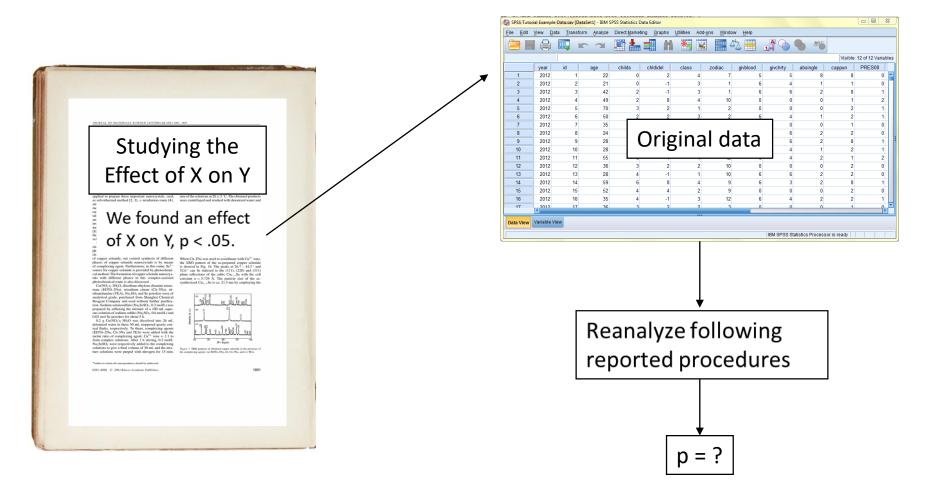
- 1. Check the **internal consistency** of the statistical results
- 2. **Reanalyze** the data using the original analytical strategy
- 3. Check if the result is robust to **alternative analytical choices**
- 4. Perform a **replication** study in a new sample

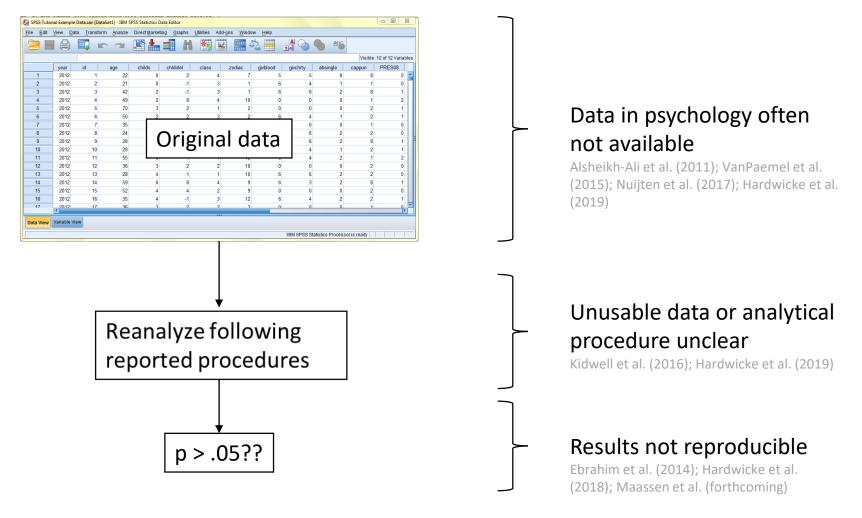
Today.

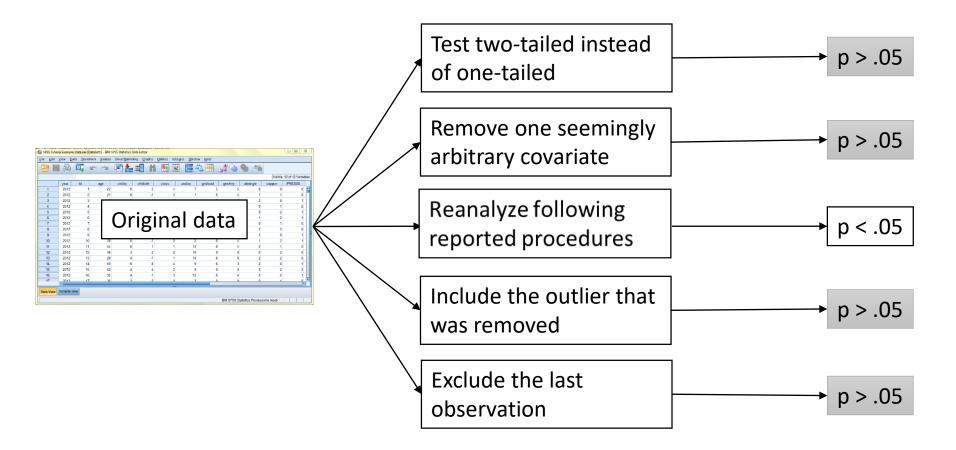

Assessing and **improving** robustness of psychological science in 4 steps (while using minimal resources).

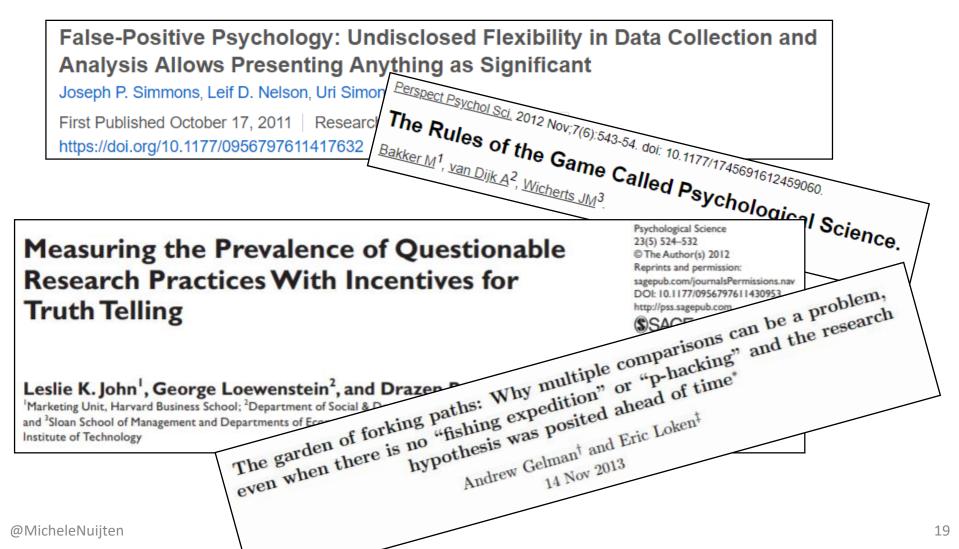


= Statistical sanity check


Also as expected, when priming condition was crossed with age group and time of memory prediction, interaction effects emerged for both the photo recall predictions, F(1, 122) = 0.03, p < .01 and the learned recall predictions, F(1, 135) = 3.75, p < .06.




2. Reanalyze the data using the original analytical strategy.


2. Reanalyze the data using the original analytical strategy.

3. Check if the result is robust to alternative analytical choices.

3. Check if the result is robust to alternative analytical choices.

4. Perform a replication study in a new sample.

- 1. Check the **internal consistency** of the statistical results
- 2. **Reanalyze** the data using the original analytical strategy
- 3. Check if the result is robust to alternative analytical choices
 - 4. Perform a **replication** study in a new sample

Failed replication more likely to have bearing on the effect

Today.

Assessing and **improving** robustness of psychological science in 4 steps (while using minimal resources).

1. Check the **internal consistency** of your own statistical results

• Use statcheck and related tools for self-checks / in the peer review process

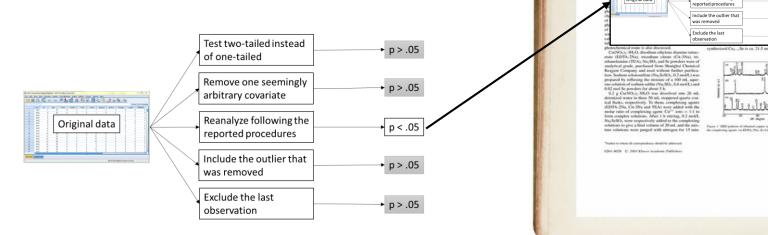
S	tatch≣ck	
	statcheck on the web	
To check a PDF, DOCX or HTML file for More information on this program is as	or errors in statistical reporting, upload it below.	
(Currently in beta - please tell Sean at		
Upload files (pdf, html, or docx): Browse Paper1 pdf Upload compliate	Coversional Results (ctsr)	
Browse Paper1.pdf	Download Results (civit)	i
Browse Paper1 pdf Upisad complete	Downtoad Results (civ) Search:	İ
Proves. Papert pdf Uskal convex Ty to steem and Ty to steem and tests? Show 10 * entries Source Statistical Reference	Baarch: Computed p Volue 0 Consistency 0	İ
Brows Papert pdf Lossid compile Try to identify and correct for one-tailed tests? Show 10 • entries	Baarcht	İ

2. Facilitate reanalyis of the data

- Share data
- Share well-documented data
- Share analysis scripts
- "In-house" code review (co-authors = co-pilots)
- Code review during peer review
- Fully reproducible dynamic manuscripts (R Markdown, Code Ocean, Docker, etc.)

3. Report whether your result is robust to **alternative analytical choices**

21-word solution


Simmons et al. (2011)

These 21 words in a Methods section can say it succinctly:

"We	repor	t how	we	deter	mined	our	sample	si	ze,	all	data	exclusions	(if	
any)	, all	manip	ula	tions,	and	all	measures	in	the	stu	dy."			

3. Check and report whether your result is robust to alternative analytical choices

- Journals could require sensitivity analyses
- Multiverse analysis Steegen et al. (2016)

Studying the

Effect of X on Y

Test two-tailed instead of one-tailed Remove one seemingly


arbitrary covariate Reanalyze following th

Original data

p > .0

• p < .05

4. Facilitate replication in a new sample

Write detailed methods sections/appendices and share materials & protocols!

Discussion.

Assessing and **improving** robustness of psychological science in 4 steps (while using minimal resources).

- If you're interested in the robustness of a **specific study**
- Context matters: an inconsistency in the 3rd decimal doesn't automatically mean you shouldn't replicate
- Regardless of the logic of the 4-step robustness check:

All published research should always be reproducible!

Thank you!

A 4-step robustness check to **assess** and **improve** psychological science.

- 1. Check the **internal consistency** of the statistical results
- 2. **Reanalyze** the data using the original analytical strategy
- 3. Check if the result is robust to **alternative analytical choices**
- 4. Perform a **replication** study in a new sample

References.

Alsheikh-Ali, A. A., et al. (2011). "Public availability of published research data in high-impact journals." PLoS One 6(9): e24357.

- Bakker, M., et al. (2012). "The rules of the game called psychological science." Perspectives on Psychological Science 7(6): 543-554.
- Brown, N. J. L. and J. A. J. Heathers (2016). "The GRIM Test: A Simple Technique Detects Numerous Anomalies in the Reporting of Results in Psychology." Social Psychological and Personality Science 8(4): 363-369.
- Ebrahim, S., Sohani, Z. N., Montoya, L., Agarwal, A., Thorlund, K., Mills, E. J., & Ioannidis, J. P. A. (2014). Reanalyses of Randomized Clinical Trial Data. Jama-Journal of the American Medical Association, 312(10), 1024-1032. doi:10.1001/jama.2014.9646

Epskamp, S. and M. B. Nuijten (2014). statcheck: Extract statistics from articles and recompute p values. R package version 1.0.0. Available from http://CRAN.R-project.org/package=statcheck.

- Gelman, A. and E. Loken (2014). "The statistical crisis in science data-dependent analysis a "garden of forking paths" explains why many statistically significant comparisons don't hold up." American Scientist 102(6): 460.
- Georgescu, C. and J. D. Wren (2017). "Algorithmic identification of discrepancies between published ratios and their reported confidence intervals and p-values." Bioinformatics 34(10): 1758-1766.
- Hardwicke, T. E., et al. (2018). "Data availability, reusability, and analytic reproducibility: evaluating the impact of a mandatory open data policy at the journal Cognition." Royal Society open science 5(8).
- Hardwicke, T. E., Wallach, J. D., Kidwell, M. C., & loannidis, J. P. A. (2019). An empirical assessment of transparency and reproducibility-related research practices in the social sciences (2014-2017). Preprint retrieved from https://osf.io/preprints/metaarxiv/6uhg5/.
- John, L. K., et al. (2012). "Measuring the prevalence of questionable research practices with incentives for truth-telling." Psychological science 23: 524-532.
- Kidwell, M. C., et al. (2016). "Badges to Acknowledge Open Practices: A Simple, Low-Cost, Effective Method for Increasing Transparency." PLoS biology 14(5): e1002456.
- Maassen, E., Van Assen, M. A. L. M., Nuijten, M. B., Olsson-Collentine, A. & Wicherts, J. M. (in preparation). Investigating the Reproducibility of Meta-Analyses in Psychology.
- Nuijten, M. B. (2018). Research on research: a meta-scientific study of problems and solutions in psychological science. Doctoral dissertation. Available from https://psyarxiv.com/qtk7e.
- Nuijten, M. B., et al. (2016). "The prevalence of statistical reporting errors in psychology (1985-2013)." Behavior Research Methods 48(4): 1205-1226.
- Nuijten, M. B., et al. (2017). "Journal data sharing policies and statistical reporting inconsistencies in psychology." Collabra: Psychology 3(1): 1-22.
- Petrocelli, J., et al. (2012). "When ab ≠ c c': Published errors in the reports of single-mediator models: Published errors in the reports of single-mediator models." Behavior Research Methods: 1-7.
- Simmons, J. P., et al. (2011). "False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant." Psychological science 22: 1359 1366.
- Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2012). A 21 word solution. Available at SSRN 2160588. Chicago
- Steegen, S., et al. (2016). "Increasing transparency through a multiverse analysis." Perspectives on Psychological Science 11(5): 702-712.

Vanpaemel, W., et al. (2015). "Are we wasting a good crisis? The availability of psychological research data after the storm." Collabra 1(1): 1-5.