

On needles and haystacks: Finding answers in complex health data

Rianne Jacobs

Faculty of Science and Engineering University of Groningen

8 November 2019

1/18

Table of Contents

- 1. Introduction
- 2. Foodborne disease outbreaks
- 3. Bayesian variable selection
 - 3.1 Methodology
 - 3.2 Results and Conclusions
- 4. What is next?
 - 4.1 Structured data
 - 4.2 Other considerations
- 5. Take home message

1 Introduction

Bayesian variable selection methodology for complex health data

- Large amount of previous knowledge and insights available
- Results have more natural interpretation, e.g. confidence intervals are often interpreted as credible intervals
- Relatively easy to implement complex models

1 Introduction

Bayesian variable selection methodology for complex health data

- Prediction
 - Finding best model for good prediction
 - Adjusting the outcome for confounders for fair comparisons
- Explanation
 - Finding (group of) variables that explain some outcome of interest
 - Finding the most important variable that best explains some outcome of interest

4/18

1 Introduction

Bayesian variable selection methodology for complex health data

- Structure in the data
 - Multilevel, e.g. longitudinal data, matched data, patients in hospitals, people in neighbourhoods
 - Correlated explanatory variables, possibly multilevel structure
- Many covariates, possibly p > n need some form of regularization
- Measurement error / misclassification
- Missing values

2 Foodborne disease outbreaks

Identifying the source of food-borne disease outbreaks: An application of Bayesian variable selection (2019) *Statistical Methods in Medical Research*

- Setting
 - Cases and controls fill in extensive food consumption questionnaires
 - Goal: find the food product that best distinguishes cases from controls
 - Logistic regression with variable selection
- Challenges
 - More variables than observations (p > n)
 - Misclassification in response
 - Many missing values
 - Cases and controls are matched
 - Covariates may be correlated
 - Small sample estimation problems

When searching for the cause of an outbreak we need a far more sophisticated variable selection procedure

7/18

When searching for the cause of an outbreak we need a far more sophisticated variable selection procedure

- We propose Bayesian method
- Can include prior information may be crucial in beginning of outbreak
- Relatively easy implementation of variable selection, missing value imputation and misclassification correction
- No small sample estimation problems

- Data
 - Salmonella 2012 outbreak data
 - 302 observations
 - 106 exposure covariates
 - 0 not eaten / not filled in
 - 1 eaten
 - 2 maybe (missing in our model)
- Model
 - Main effects model
 - Fixed covariates age and gender

3.1 Methodology

- Observed response $Y = (Y_1, Y_2, ..., Y_n)'$
- True response $T = (T_1, T_2, ..., T_n)'$

$$Y_i \sim \mathrm{Bernoulli}(\mu_i)$$

 $\mu_i = \pi_i(\mathrm{Se}) + (1 - \pi_i)(1 - \mathrm{Sp})$
 $\mathrm{logit}(\pi_i) = \beta_0 + \mathbf{x}_i \boldsymbol{\beta}$

$$P(Y_i = 1 | T_i = 1) = \text{Se}$$

 $P(Y_i = 0 | T_i = 0) = \text{Sp}$

• However, no non-infected person entered the dataset as a case $P(Y_i = 1 | T_i = 0, X_i) = 0 \rightarrow \text{Sp} = P(Y_i = 0 | T_i = 0) = 1$

Stochastic Search Variable Selection (SSVS) (George and McCulloch, 1993)

• Mixture prior on β_j , with spike and slab Gaussian components

$$\beta_j | \tau_j^2, c_j^2 \tau_j^2, \gamma_j \sim (1 - \gamma_j) \, \mathcal{N}(0, \tau_j^2) + \gamma_j \, \mathcal{N}(0, c_j^2 \tau_j^2)$$
$$\gamma_j | \omega_j \sim \text{Bernoulli}(\omega_j)$$
$$\omega_j \sim \text{Beta}(a_{0j}, b_{0j})$$

where

- γ_i indicator variable for inclusion of β_i into the model
- ω_j inclusion probability of the j^{th} covariate
- Inclusion probabilities: Beta(1, 2) favours parsimonious models
- Strong informative prior for sensitivity identifiability

Missing data model

$$p(\mathbf{x}_{i,mis}|\mathbf{x}_{i,obs},\boldsymbol{\theta}_X)$$

$$= p(x_{i,mis_1}|\mathbf{x}_{i,obs},\boldsymbol{\theta}_{X_1}) \prod_{j=2}^{p} p(x_{i,mis_j}|x_{i,mis_1},...,x_{i,mis_{(j-1)}},\mathbf{x}_{i,obs},\boldsymbol{\theta}_{X_j})$$

- Each conditional distribution is Bernoulli with logit link function
- Possible sparse relationships between variables
- Variable selection in each of the conditional regression models of the covariate probability model
- Mitra and Dunson (2010) developed 2-level SSVS

3.2 Results and Conclusions

- 50% weak
- 75% positive
- 95% strong
- 99% very strong

3.2 Results and Conclusions

- Cannot fit standard logistic regression model early in outbreak
- Need some regularization or extra information (Lasso or Bayes)
- Compared to standard logistic regression, one week earlier detection
- Lasso diminishes differences in odds ratios between products more difficult to identify product with large effect
- As evidence in the data increased for smoked fish, Bayes showed a steep increase in odds ratio reflecting this evidence
- Not in Lasso only slight increase as the odds ratios are kept small due to the shrinkage (strong effects are also shrunk)

4 What is next?

4.1 Structured data

- Incorporating the matched design of the study into the methodology
- Strata with one case and several controls matched on well-known confounders
- Conditional logistic regression

$$L(\boldsymbol{\beta}) = \prod_{k=1}^{K} \frac{e^{\boldsymbol{\beta}' \boldsymbol{x}_{k1}}}{e^{\boldsymbol{\beta}' \boldsymbol{x}_{k1}} + e^{\boldsymbol{\beta}' \boldsymbol{x}_{k2}} + \dots e^{\boldsymbol{\beta}' \boldsymbol{x}_{km}}}$$

where x_{km} denotes covariate values for m^{th} individual in k^{th} stratum.

Main challenge is the Bayesian implementation of this model

- Equivalent to multinomial regression with *m* categories
- Also possible to rewrite as Poisson regression model
- Dealing with varying strata size

4 What is next?

4.2 Other considerations

- Prior specification of sensitivity and inclusion probabilities
 - Extensive literature study
 - Inform priors using data on most likely suspects
- Empirical Bayes estimate inclusion probabilities from current data and available external data
- Dynamic modelling
 - Posterior of initial analysis becomes prior of subsequent analysis
 - Not trivial to implement in spike-and-slab context

References

George, E. I. and McCulloch, R. E. (1993). Variable selection via Gibbs sampling. *Journal of the American Statistical Association*, 88(423):881–889.

Mitra, R. and Dunson, D. (2010). Two-level stochastic search variable selection in GLMs with missing predictors. *The International Journal of Biostatistics*, 6(1):33.

6 Take home message

- Bayesian variable selection is good alternative to current ad hoc source identification methods
- Relatively easy to implement and great flexibility to adapt model
- Current model still needs some refinements
- Large potential for interesting enhancements and extensions

Thank you

rianne.jacobs@rug.nl