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•  Where	  we	  stand:	  what’s	  changed	  in	  recent	  years	  and	  some	  
snapshots	  of	  recent	  work	  in	  predic7on	  and	  causal	  learning	  

•  Where	  we’re	  going:	  how	  will	  things	  look	  in	  the	  future?	  Why	  
aren’t	  we	  further	  ahead	  already?	  

ML	  &	  medicine	  



•  Last	  ~15	  years,	  major	  developments	  in	  understanding	  of:	  

•  RegularizaMon	  and	  high-‐dimensional	  learning	  

•  Highly	  flexible,	  data-‐adapMve	  models	  

•  ComputaMonally	  feasible	  learning	  schemes	  

•  Hardware	  and	  associated	  libraries	  

Where	  we	  stand:	  	  
the	  high-‐dimensional	  revoluMon	  

Drama7c	  change	  
in	  how	  we	  view	  
high-‐dimensional	  
data	  and	  complex	  

models	  



•  Up	  to	  30,000	  people	  
•  Follow-‐up	  30	  years	  or	  more	  
•  Deep	  phenotyping	  
•  Mul7ple	  modali7es	  

Where	  we	  stand:	  scale	  up	  of	  	  
phenotyping/data	  acquisiMon	  



•  Two	  broad	  kinds	  of	  ques7ons/tasks:	  

(1)	  “Predic7ve”.	  Can	  be	  framed	  in	  terms	  of	  minimizing	  some	  kind	  of	  expected	  
loss,	  typically	  supervised	  learning	  set-‐up.	  	  
Examples:	  diagnosis,	  prognosis,	  “theranosMcs”,	  some	  pre-‐processing…	  
(2)	  “Causal”.	  Goal	  is	  to	  guide	  new	  intervenMons.	  
Examples:	  idenMfying	  new	  therapies,	  aeMology,	  preventaMve	  factors	  …	  
	  

•  Depends	  on	  not	  only	  the	  quesMon	  (“will	  treatment	  A	  work	  for	  paMent	  X”)	  but	  
the	  data	  context	  

•  Current/emerging	  biotechnological	  and	  data	  science	  tools	  offer	  promise	  of	  
major	  changes	  in	  both	  areas	  

Two	  kinds	  of	  quesMons	  



Predic7on	  in	  medicine	  



•  Many	  medical	  tasks	  are	  fundamentally	  staMsMcal	  decision	  problems,	  
including:	  

•  Diagnosis	  

•  Prognosis	  

•  TheranosMcs	  

•  With	  appropriate	  data,	  all	  can	  be	  viewed	  as	  supervised	  learning	  
problems,	  with	  different	  Xs	  and	  Ys	  

PredicMon	  in	  medicine	  



•  Medical	  applicaMons	  of	  supervised	  learning	  have	  some	  key	  features:	  
•  Heterogeneity	  (within	  study)	  

•  Batch-‐	  and	  populaMon-‐type	  effects	  and	  generalizability	  

•  MulM-‐modality	  

•  High-‐dimensionality,	  weak	  first-‐principles	  informaMon	  

•  Bayes’	  risk	  not	  known	  in	  advance	  –	  always	  an	  empirical	  quesMon	  

•  Ethical	  quesMons	  

Why	  predicMon	  in	  medicine	  is	  different	  



•  Joint	  Lasso	  (Dondelinger	  &	  SM,	  Biosta*s*cs,	  2018),	  
augments	  classical	  lasso	  penalty	  with	  between-‐group	  
terms	  that	  allow	  for	  joint	  learning	  

•  Can	  offer	  gains	  in	  predicMon,	  also	  quite	  different	  
sparsity	  pakerns	  

Heterogeneity:	  joint	  learning	  over	  subtypes	  

High-dimensional regression over disease subgroups 11

Fig. 2. Alzheimers disease prediction results, ADNI data. Left panel: Box plots showing difference in RMSE of joint
lasso with different fusion penalties compared with the pooled linear regression model (higher values indicate better
performance by the joint lasso). [Subgroup-wise analysis performed less well than pooled and is not shown; boxplots
are over 10-fold cross-validation.] Right panel: Scatter plots show predicted and observed 24-month slopes for each
of the standard and joint lasso regression models. All predictions were obtained via 10-fold cross-validation.

distance between the means of each subgroup (in the space of genetic and clinical variables). Weighting
did not appear to improve performance.

Figure 2 (right) shows scatter plots of predicted MMSE slopes versus the true slopes. The predictions
were obtained in a held-out fashion via 10-fold cross-validation (CV), as were the RMSE and Pearson
correlations shown. We see that predicted slopes from the ℓ1 approach better match the observed slopes,
with the large improvement in Pearson correlation mostly driven by a few outliers in AD and LMCI.
Overall the joint lasso improves on the pooled and group-wise approaches.

We further used the estimates of the effect sizes for the SNP data to perform a pathway enrichment
analysis using the KEGG database (Kanehisa and Goto, 2000). The results are presented in Figure 1 of
the supplementary material available at Biostatistics online. We show that increased fusion allows for
the identification of common enriched pathways among the subgroups that would not be identified in a
group-wise approach.

Figure 3 shows a comparison of the estimated regression coefficients themselves. The subgroup-wise
approach is much sparser than the other methods, likely due to the fact that it must operate entirely
separately on each (relatively small-sample) subgroup. In addition to loss of prediction power given finite
training samples, this is another drawback of the group-wise approach, which is otherwise likely better
specified than simple pooling. The pooled approach finds more influential variables but obviously there
can be no subgroup-specificity. The joint lasso selects more variables than the subgroup-wise analysis,
but there are many instances of subgroup-specificity in the estimates. The ℓ1 fusion penalty seems to have
allowed for more differences between the subgroups than the ℓ2 penalty, with several instances where only
one subgroup contains a non-zero coefficient. This likely explains the better performance on some of the
outliers in AD and LMCI.

5. ALS: PREDICTION OF DISEASE PROGRESSION

ALS is an incurable neurodegenerative disease that can lead to death within three to four years of onset.
However, about ten percent of patients survive more than 10 years. Prediction of disease progression
remains an open question. We use data from the PROACT database, specifically data that were used in the
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Fig. 3. Alzheimer’s disease data, estimated regression coefficients. Heatmap showing estimated regression coefficients
for a representative subsample of the SNPs. Absolute coefficients are thresholded at e−2 to improve readability.

2015 DREAM ALS Stratification Prize4Life Challenge (data were retrieved from the PROACT database
on June 22, 2015). As above, our aim is not to propose a solution to the prediction problem per se but
rather to provide a case study exploring the use of the joint lasso in a moderate-dimensional, clinical data
setting. In contrast to the Alzheimer’s example above, here the data are less high-dimensional and the
subgrouping less clear cut (see below).

The data consist of observations from n = 2393 patients. Each patient was enrolled in a clinical
trial and followed up for a minimum of 12 months after the start of the trial. Disease progression is
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•  Scalable	  Bayesian	  regression	  (Perrakis	  &	  SM,	  JCGS,	  to	  appear),	  allows	  for	  mulMple	  
modes	  with	  high	  total	  dimension	  

•  Example	  from	  mulM-‐modal	  Alzheimers’	  predicMon	  

High-‐dimensional,	  mulM-‐modal	  data	  
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Figure 5: Alzheimer’s disease case study, predictive performance. Correlations between pre-
dictions and held-out test data from 10 random splits with ntrain = 500 and ntest = 259 under
SBR, SSBR and cSSBR using the ML (left) and PM (right) penalty estimates.

We consider three data sources: (1) clinical (CL) data consisting of pCL = 12 features
(including, among others, diagnosis at baseline, Apolipoprotein E status, gender, age, years of
education); (2) structural magnetic resonance imaging (MRI) data consisting of pMRI = 929
features; and (3) genetic data in the form of SNP data, consisting of pSNP ⇡ 7.3⇥106 features
(this is the number of SNPs available after excluding those with zero variance across subjects
and those with more than 10% missing entries). We apply the proposed methods to these
data, treating the three data types (1)-(3) as sources.

The aim is to consider a real-world application with data sources of widely di↵ering
dimensionality and to investigate whether adding the complex MRI and genetic data to
the clinical covariates can improve predictive ability. We emphasize that the goals of the
present paper are mainly methodological and that the results we present at this stage should
be regarded as illustrative of the capabilities of the methods rather than as candidate AD
predictors for practical use.

5.2 Results

Figure 5 shows results using SBR with ML and PM estimators (we omit CV) applied to CL
only, CL and MRI and finally all of the data (CL, MRI and SNP). For the latter case we also
show results using SSBR and cSSBR with fn = log(n). Predictive performance is quantified
via the correlation between predicted and observed values in held-out test data. The boxplots
show the results of 10 random train/test splits (with ntrain = 500, ntest = 259 in each split)
annotated with the number of variables with non-zero coe�cients after fitting the models in
each case.

18



•  Detailed	  study	  of	  one	  potenMal	  use-‐case:	  blood-‐based	  diagnosis	  of	  leukaemia	  

•  Problem	  well	  known	  to	  contain	  gene	  expression	  signals	  –	  quesMon	  is	  how	  to	  
assess	  reliability/usefulness	  of	  predictors?	  

•  Large,	  mulM-‐site	  data,	  total	  n	  ~	  12000	  samples,	  p	  ~	  12000	  genes	  	  

•  Joint	  with	  Schultze	  lab	  

Risk	  esMmaMon	  in	  pracMce	  



Cross-‐sampling	  to	  test	  generalizaMon	  

(Warnat-‐Herresthal,	  Perrakis	  et	  al.,	  2019)	  



(differen*al	  
diagnosis)	  



•  ML	  methods	  have	  low	  marginal	  cost	  à	  opens	  up	  possibility	  of	  moving	  
the	  diagnosMc	  threshold,	  i.e.	  invoking	  predictor	  earlier	  

•  Invoking	  predictor	  earlier	  à	  larger	  populaMon	  “at	  risk”,	  lower	  
prevalence,	  implicaMons	  for	  posiMve	  predicMve	  value	  (PPV)…	  

The	  diagnosMc	  threshold	  

Popula7on	   Disease	  
popula7on	  

Diagnos7c	  	  
threshold	  

“screening”	   confirmatory	  
diagnosis	  



•  Small	  gains	  can	  mean	  large	  differences	  in	  PPV,	  hence	  depending	  on	  
applicaMon,	  may	  need	  very	  good	  predictors	  



•  Data	  acquisiMon	  does	  not	  stay	  fixed	  over	  Mme	  à	  biotechnologies	  
change	  

•  Can	  “old”	  results	  sMll	  be	  used?	  

Technological	  change	  



•  Train	  enMrely	  on	  one	  
technology/generaMon	  

•  Test	  on	  another,	  disjoint	  with	  
respect	  to	  study/technology/
samples/normalizaMon	  

•  Covers	  first	  and	  second	  gen	  
microarrays	  and	  RNA-‐seq	  

Gen1	  à	  Gen2	  

Gen2	  à	  Gen3	  

Gen1	  à	  Gen3	  



Towards	  scalable	  causal	  learning	  



•  ScienMsts	  (rightly)	  point	  out	  that	  there	  is	  life	  beyond	  predicMon	  

•  Can	  we	  make	  this	  statement	  precise?	  

•  Yes:	  point	  is	  that	  some	  biomedical	  quesMons	  are	  causal	  or	  mechanis*c,	  
cannot	  be	  directly	  addressed	  by	  mulMvariate	  modelling	  or	  predicMon	  

•  Causal	  ideas	  are	  needed	  to	  scale	  up	  molecular	  study	  of	  disease	  processes	  

	  

But	  what	  is	  so	  different	  about	  causality?	  

Causal	  models	  in	  biomedicine	  



A	  

B	   C	  

(Unseen)	  

B	   C	  

Issue	  does	  not	  go	  away	  asympto7cally,	  not	  solved	  by	  more	  data	  
Widespread	  in	  high	  dimensions	  

B

C

Xn,p

X1, X2, . . . , Xp

fG,✓

⇡

f✓

R(f) = E[L(f(X), Y )]

Rn,✓̂(f) = E[L(f✓̂(Dn)
(X), Y )]

Dn = (xi, yi)i=1...n

1

no	  sequence	  of	  	  
mechanis*c	  events	  	  
linking	  B	  and	  C	  

(possibly	  latent)	  sequence	  	  
of	  mechanis*c	  events	  
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It remains unclear whether causal, rather than merely 
correlational, relationships in molecular networks can be 
inferred in complex biological settings. Here we describe  
the HPN-DREAM network inference challenge, which focused  
on learning causal influences in signaling networks.  
We used phosphoprotein data from cancer cell lines as well 
as in silico data from a nonlinear dynamical model. Using the 
phosphoprotein data, we scored more than 2,000 networks 
submitted by challenge participants. The networks spanned 
32 biological contexts and were scored in terms of causal 
validity with respect to unseen interventional data. A number 
of approaches were effective, and incorporating known biology 
was generally advantageous. Additional sub-challenges 
considered time-course prediction and visualization. Our results 
suggest that learning causal relationships may be feasible 
in complex settings such as disease states. Furthermore, our 
scoring approach provides a practical way to empirically assess 
inferred molecular networks in a causal sense.

Molecular networks are central to biological function, and the 
data-driven learning of regulatory connections in molecular  
networks has long been a key topic in computational biology1–6. 
An emerging notion is that networks describing a certain bio-
logical process (e.g., signal transduction or gene regulation) may 
depend on biological contexts such as cell type, tissue type and 
disease state7,8. This has motivated efforts to elucidate networks 
that are specific to such contexts9–14. In disease settings, networks 
specific to disease contexts could improve understanding of the 
underlying biology and potentially be exploited to inform rational 
therapeutic interventions.

In this study we considered inference of causal molecular net-
works, focusing specifically on signaling downstream of receptor 
tyrosine kinases. We define edges in causal molecular networks 
(‘causal edges’) as directed links between nodes in which inhibi-
tion of the parent node can lead to a change in the abundance 
of the child node (Fig. 1a), either by direct interaction or via 
unmeasured intermediate nodes (Fig. 1b). Such edges may be  
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ABSTRACT

Motivation: Protein signaling networks play a key role in cellular func-

tion, and their dysregulation is central to many diseases, including

cancer. To shed light on signaling network topology in specific con-

texts, such as cancer, requires interrogation of multiple proteins

through time and statistical approaches to make inferences regarding

network structure.

Results: In this study, we use dynamic Bayesian networks to make

inferences regarding network structure and thereby generate testable

hypotheses. We incorporate existing biology using informative net-

work priors, weighted objectively by an empirical Bayes approach,

and exploit a connection between variable selection and network in-

ference to enable exact calculation of posterior probabilities of inter-

est. The approach is computationally efficient and essentially free of

user-set tuning parameters. Results on data where the true, underlying

network is known place the approach favorably relative to existing

approaches. We apply these methods to reverse-phase protein

array time-course data from a breast cancer cell line (MDA-MB-468)

to predict signaling links that we independently validate using targeted

inhibition. The methods proposed offer a general approach by which

to elucidate molecular networks specific to biological context, includ-

ing, but not limited to, human cancers.

Availability: http://mukherjeelab.nki.nl/DBN (code and data).

Contact: s.hill@nki.nl; gmills@mdanderson.org; s.mukherjee@nki.nl

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Protein signaling plays a central role in diverse cellular functions,
and aberrations in signaling are implicated in almost every aspect
of cancer biology. Indeed, an emerging literature suggests that
signaling networks may be ‘rewired’ in specific contexts, includ-
ing cancer (Lee et al., 2012; Pawson and Warner, 2007). That is,

the network may differ in a cancer cell compared with a normal
cell, for example due to genetic alterations. Yet the manner in
which genomic alterations in specific cancers are manifested at
the level of signaling networks is not currently well understood.
Elucidating signaling networks in a data-driven manner, spe-

cific to a context of interest (such as a cell line or tissue type),
requires the ability to probe post-translational modification
states in multiple proteins through time and across samples.
However, proteomic analyses on this scale remain challenging.
At the same time, the modeling of signaling connectivity poses

statistical challenges. Noise, both intrinsic and experimental, is
ubiquitous in this setting and network components may interact
in a complex, non-linear manner. Candidate networks may differ
with respect to model dimension, which in turn means that ana-
lyses that do not account for this run the risk of preferring net-
works that are over-complex, yet not predictive. This makes the
trade-off between fit-to-data and model parsimony a crucial one
in network modeling.
In this article, we present a data-driven approach to the char-

acterization of context-specific signaling networks (Fig. 1). We
exploit reverse-phase protein array technology (Tibes et al., 2006)
to interrogate dynamic signaling responses in a defined set of 20
phospho-proteins. We use directed graphical models known as
dynamic Bayesian networks (DBNs) (Friedman et al., 1998;
Murphy, 2002), to probabilistically describe relationships
between variables. DBNs have previously been applied to gene
expression data for inference of gene regulatory networks
(Husmeier, 2003; Rau et al., 2010), but to the best of our know-
ledge have not been applied to inference of protein signaling
networks. Static Bayesian networks (BNs) have previously
been employed to infer both protein signaling networks
(Ciaccio et al., 2010; Mukherjee and Speed, 2008; Sachs et al.,
2005) and gene regulatory networks (Friedman et al., 2000), but
unlike DBNs, do not incorporate an explicit time element.
We perform inference regarding network topology within a

Bayesian framework, with existing signaling biology incorpo-
rated through an informative prior distribution on networks
(following Werhli and Husmeier (2007); Mukherjee and Speed
(2008), see Fig. 1). Model averaging over network structures is*To whom correspondence should be addressed.
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Abstract

This paper considers inference of causal structure in a class of graphical models called
conditional DAGs. These are directed acyclic graph (DAG) models with two kinds of
variables, primary and secondary. The secondary variables are used to aid in the estimation
of the structure of causal relationships between the primary variables. We prove that,
under certain assumptions, such causal structure is identifiable from the joint observational
distribution of the primary and secondary variables. We give causal semantics for the model
class, put forward a score-based approach for estimation and establish consistency results.
Empirical results demonstrate gains compared with formulations that treat all variables
on an equal footing, or that ignore secondary variables. The methodology is motivated
by applications in biology that involve multiple data types and is illustrated here using
simulated data and in an analysis of molecular data from the Cancer Genome Atlas.
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1. Introduction

This paper considers learning causal structure among a set of primary variables (Yi)i2V ,
using additional secondary variables (Xi)i2W to aid in estimation. The primary variables are
those of direct scientific interest while the secondary variables are variables that are known
to influence the primary variables, but whose mutual relationships are not of immediate
interest and perhaps not amenable to estimation using the available data. As we discuss
further below, the primary/secondary distinction is common in biostatistical applications
and is often dealt with in an ad hoc manner, for example by leaving some relationships
or edges implicit in causal diagrams. Our aim is to define a class of graphical models for
this setting and to clarify the conditions under which secondary variables can aid in causal
estimation. We focus on causal estimation in the sense of estimation of the presence or
absence of edges in the causal graph rather than estimation of quantitative causal e↵ects.

c�2016 Chris. J. Oates, Jim. Q. Smith and Sach Mukherjee.

ar
X

iv
:1

50
4.

07
88

2v
2 

 [s
ta

t.M
E]

  1
6 

Ju
n 

20
15

The Annals of Applied Statistics
2015, Vol. 9, No. 1, 507–524
DOI: 10.1214/15-AOAS806
c⃝ Institute of Mathematical Statistics, 2015

INFERRING NETWORK STRUCTURE FROM INTERVENTIONAL
TIME-COURSE EXPERIMENTS
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Graphical models are widely used to study biological networks.
Interventions on network nodes are an important feature of many
experimental designs for the study of biological networks. In this pa-
per we put forward a causal variant of dynamic Bayesian networks
(DBNs) for the purpose of modeling time-course data with interven-
tions. The models inherit the simplicity and computational efficiency
of DBNs but allow interventional data to be integrated into network
inference. We show empirical results, on both simulated and experi-
mental data, that demonstrate the need to appropriately handle in-
terventions when interventions form part of the design.

1. Introduction. Network inference approaches are widely used to study
biological networks, including gene regulatory and signaling networks. Since
processes underlying such networks are dynamical in nature, time-course
data can help to elucidate regulatory interplay. Network inference methods
for time-course data have been investigated in the literature, with contribu-
tions including (among many others) Husmeier (2003), Bansal, Gatta and
di Bernardo (2006), Hill et al. (2012). Scalable assays spanning multiple
molecular variables continue to advance and network inference applied to
such data offers the potential to provide biological insights over many vari-
ables at once. Inferred networks can be used to generate testable hypotheses
that are context specific in the sense of reflecting regulatory events in the
specific cells under study [Maher (2012), Hill et al. (2012)]. In disease biology,
such context-specific networks can be used to shed light on disease-specific
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those of direct scientific interest while the secondary variables are variables that are known
to influence the primary variables, but whose mutual relationships are not of immediate
interest and perhaps not amenable to estimation using the available data. As we discuss
further below, the primary/secondary distinction is common in biostatistical applications
and is often dealt with in an ad hoc manner, for example by leaving some relationships
or edges implicit in causal diagrams. Our aim is to define a class of graphical models for
this setting and to clarify the conditions under which secondary variables can aid in causal
estimation. We focus on causal estimation in the sense of estimation of the presence or
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ABSTRACT

Motivation: Networks are widely used as structural summaries of bio-

chemical systems. Statistical estimation of networks is usually based

on linear or discrete models. However, the dynamics of biochemical

systems are generally non-linear, suggesting that suitable non-linear

formulations may offer gains with respect to causal network inference

and aid in associated prediction problems.

Results: We present a general framework for network inference and

dynamical prediction using time course data that is rooted in non-

linear biochemical kinetics. This is achieved by considering a dynam-

ical system based on a chemical reaction graph with associated

kinetic parameters. Both the graph and kinetic parameters are treated

as unknown; inference is carried out within a Bayesian framework.

This allows prediction of dynamical behavior even when the underlying

reaction graph itself is unknown or uncertain. Results, based on (i) data

simulated from a mechanistic model of mitogen-activated protein

kinase signaling and (ii) phosphoproteomic data from cancer cell

lines, demonstrate that non-linear formulations can yield gains in

causal network inference and permit dynamical prediction and uncer-

tainty quantification in the challenging setting where the reaction graph

is unknown.

Availability and implementation: MATLAB R2014a software is avail-

able to download from warwick.ac.uk/chrisoates.

Contact: c.oates@warwick.ac.uk or sach@mrc-bsu.cam.ac.uk

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Statistical network inference techniques are widely used in the
analysis of multivariate biochemical data (Ellis and Wong, 2008;
Sachs et al., 2005). These techniques aim to make inferences re-
garding a network N whose vertices are identified with biomole-
cular components (e.g. genes or proteins) and edges with (direct
or indirect) regulatory interplay between those components.
Network inference methods are typically rooted in linear or

discrete models whose statistical and computational advantages
facilitate exploration of large spaces of networks (e.g. Ellis and
Wong, 2008; Maathuis et al., 2009; Werhli et al., 2006). On the
other hand, when the network topology is known, non-linear
ordinary differential equations (ODEs) are widely used to
model biochemical dynamics (Chen et al., 2009; Kholodenko,
2006). The intermediate case where ODE models are used to
select between candidate networks has received less attention.

We propose a general framework called ‘Chemical Model
Averaging’ (CheMA) that uses biochemical ODE models to
carry out both network inference and dynamical prediction. In
summary, we consider a dynamical system dX=dt=fGðX; !Þ
where the state vector X contains the abundances of molecular
species, G is a chemical reaction graph that characterizes reac-
tions in the system, fG is a kinetic model that depends onG, and !
collects together all unknown kinetic parameters. A causal net-
work N is obtained as a coarse summary N(G) of the reaction
graph G in which each chemical species appears as a single node,
and directed edges indicate that the parent is involved in chem-
ical reaction(s), which have the child as product (we make these
notions precise below). Given time course data D consisting of
noisy measurements of X, we carry out inference and prediction
within a Bayesian framework. In particular, we treat G itself as
unknown and make inference concerning it using the posterior
distribution,

pðGjDÞ / pðGÞ
Z

pðDj!;GÞpð!jGÞd!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
marginal likelihood pðDjGÞ

ð1Þ

where the marginal likelihood pðDjGÞ captures how well the
chemical reaction graph G describes data D, taking into account
both parameter uncertainty and model complexity and pð!jGÞ is
a prior density over the kinetic parameters. In contrast to linear
or discrete models that are motivated by tractability, our likeli-
hood pðDj!;GÞ depends on (richer) reaction graphs G and their
associated kinetics.
This article makes three contributions: (i) A general frame-

work for joint network learning and dynamical prediction
using ODE models, (ii) a specific implementation (‘CheMA
1.0’), rooted in Michaelis–Menten kinetics, that uses
Metropolis-within-Gibbs sampling to allow Bayesian inference
at feasible computational cost and (iii) an empirical investigation,
using both simulated and experimental time course data, of the
performance of CheMA 1.0 relative to several existing
approaches for network inference and dynamical prediction.
The statistical connection between linear ODEs and network

inference using linear models has been discussed in Oates and
Mukherjee (2012) and exploited in Bansal et al. (2006), Gardner
et al. (2003). Several approaches based on non-linear ODEs have
been proposed, including €Aij€o and L€ahdesm€aki (2010); Honkela
et al. (2010); Nachman et al. (2004); Nelander et al. (2008). This
article extends these ideas by formulating a Bayesian approach to
both network inference and dynamical prediction that is rooted
in chemical kinetics. Bayesian model selection based on non-
linear ODEs has been shown to be a promising strategy for*To whom correspondence should be addressed.
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SUMMARY

Signaling networks downstream of receptor tyrosine
kinases are among the most extensively studied bio-
logical networks, but new approaches are needed
to elucidate causal relationships between network
components and understand how such relation-
ships are influenced by biological context and dis-
ease. Here, we investigate the context specificity of
signaling networks within a causal conceptual frame-
work using reverse-phase protein array time-course
assays and network analysis approaches. We focus
on a well-defined set of signaling proteins profiled
under inhibition with five kinase inhibitors in 32 con-
texts: four breast cancer cell lines (MCF7, UACC812,
BT20, and BT549) under eight stimulus conditions.
The data, spanning multiple pathways and com-
prising !70,000 phosphoprotein and !260,000 pro-
tein measurements, provide a wealth of testable,
context-specific hypotheses, several of which we
experimentally validate. Furthermore, the data pro-
vide a unique resource for computational methods
development, permitting empirical assessment of
causal network learning in a complex, mammalian
setting.

INTRODUCTION

The complexity of mammalian receptor tyrosine kinase (RTK)
signaling continues to pose challenges for the understanding

of physiological processes and aberrations that are relevant
to disease. Networks, comprising nodes and linking directed
edges, are widely used to summarize and reason about
signaling. Obviously, signaling systems depend on the concen-
tration and localization of their component molecules, so
signaling events may be influenced by genetic and epigenetic
context (Saez-Rodriguez et al., 2011; Good et al., 2009; Zalatan
et al., 2012). In disease biology, and cancer in particular, an
improved understanding of signaling in specific contexts may
have implications for precision medicine by helping to explain
variation in disease phenotypes or therapeutic response.
Genomic heterogeneity in disease has been well studied,

notably in cancer, and heterogeneity is also manifested at the
level of differential expression of components of signaling path-
ways downstream of RTKs (Akbani et al., 2014; Gerlinger and
Swanton, 2010; Nickel et al., 2012; Szerlip et al., 2012). However,
differences in average protein abundance (as captured in differ-
ential expression or gene set analyses) are conceptually distinct
from differences in the edge structure of signaling networks, with
the latter implying a change in the ability of nodes to causally in-
fluence each other. Causal relationships are also fundamentally
distinct from statistical correlations: if there is a causal edge
from node A to node B, then the abundance of B may be
changed by inhibition of A, but A and B can be correlated with
no causal edge linking them (see below for an illustrative
example). For this reason, standard concepts from multivariate
statistics (that in turn underpin many network analyses in bioin-
formatics) may not be sufficient for causal analyses (Pearl, 2009).
Canonical signaling pathways and networks (as described, for

example, in textbooks and online resources) typically summarize
evidence from multiple experiments, conducted in different cell
types and growth conditions, and therefore, such networks are
not specific to a particular context. Many well-known links in

Cell Systems 4, 73–83, January 25, 2017 ª 2016 The Authors. Published by Elsevier Inc. 73
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■ An analysis of causal network inference  

■ Lattice light sheet-PAINT imaging of thick specimens   

■ HomoFRET based sensors for NADP+ 

■ Membrane protein-ligand binding detected by MS 

■ Measuring activity in multiple brain regions
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Towards	  truly	  scalable	  causal	  learning	  

•  Casual	  learning:	  very	  hard	  problem,	  progress	  exciMng,	  but	  exisMng	  
approaches	  do	  not	  always	  scale	  well	  in	  terms	  of	  p	  or	  human	  overhead	  

•  Recently	  pursuing	  new	  approach,	  based	  on	  causal	  manifolds	  

•  Idea	  is	  to	  bypass	  graphical	  models	  whilst	  learning	  asymmetric	  
relaMonships	  at	  scale	  

•  Some	  examples	  using	  large	  scale	  experimental	  data…	  



Causal Learning via Manifold Regularization
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Figure 1: Results for dataset D1 (yeast data), random sampling. Area under the ROC curve
(AUC; with respect to causal relationships determined from unseen interventional
data), as a function of the fraction ⇢ of labels available (labels were sampled at
random). Results are shown for three training data sample sizes ntrain. Results
are mean values over 25 iterations and error bars indicate standard error of the
mean. Additional results for the PC algorithm appear in Appendix C (see text
for details).

rows whose labels are provided to MRCL. The same data was also provided as input to the
other approaches, including in dataset D for MRCL. This means the data matrices di↵er
from those above, with sample size dependent on ⇢, and for MRCL, D now includes data
that was used to obtain background information � (train/test validity is preserved since
it remains the case that all testing is done with respect to entirely unseen interventions).
Results appear in Figure 3, with PC and GIES shown as a points on the ROC plane. MRCL
appears to o↵er an improvement relative to the other methods (see also the Discussion).
Note that GIES is not directly applicable to the random sampling setting above since it
requires the interventional data with respect to all other variables (and not just a subset
thereof).

3.3 Dataset D2: Protein Time-Course Data

Data. The data consisted of protein measurements for p = 35 proteins measured at seven
time points in four di↵erent ‘cell lines’ (BT20, BT549, MCF7 and UACC812; these are
laboratory models of human cancer) and under eight growth conditions. The proteins under

13

•  Extensive	  yeast	  data,	  p=50,	  tested	  against	  experimentally-‐verified	  causal	  relaMonships	  
•  Significantly	  outperforms	  several	  exisMng	  approaches	  
•  Ongoing:	  scaling	  and	  tesMng	  on	  human-‐genome-‐wide	  scale	  problems	  

(Hill	  et	  al.,	  arXiv:1612.05678	  [stat.ML])	  

Causal	  manifold	  learning	  



Causality	  and	  predic7on	  



•  Different	  problems,	  oten	  confused	  in	  
medical	  research	  

•  PredicMve	  or	  mulMvariate	  tools	  do	  not	  in	  
general	  work	  for	  causal	  learning	  

•  But	  equally	  mechanisMc	  insights	  may	  not	  be	  
very	  relevant	  for	  predicMon!	  

•  Example,	  go	  back	  to	  leukaemia	  data….	  

•  Include/enMrely	  exclude	  known	  causal	  
drivers…	  à	  known	  disease	  drivers	  not	  
needed	  for	  predicMon	  

Causality	  and	  predicMon	  



RC	  

X1	  

X2	  

Y	  

SE1	   SE2	   SEp	  

Xm	  

…	  

Machine	  learning	  ques7on:	  
	   	  Is	  Root	  Cause	  RC	  guaranteed	  to	  be	  a	  	  

	  beTer	  predictor	  of	  Y	  than	  e.g.	  side	  effects	  {SEj}?	  

“Root	  cause”	  

Effect/output	  

“Side	  effects”	  



•  In	  real-‐world	  systems	  –	  with	  measurement	  noise,	  nontrivial	  correlaMon	  
structure	  etc.	  –	  	  not	  guaranteed	  that	  true	  model	  class	  is	  best	  predictor	  	  

•  Composing	  mechanisMc	  models	  across	  scales	  may	  not	  work,	  end-‐to-‐end	  input-‐
output	  mapping	  may	  be	  more	  effecMve	  

•  Real-‐world	  examples:	  cancer	  predicMon,	  speech	  recogniMon	  (Jelinek:	  “AnyMme	  
a	  linguist	  leaves	  the	  group	  the	  recogniMon	  rate	  goes	  up”),	  and	  more	  

The	  predicMon	  paradox	  

Implica7ons:	  
-‐	  Be	  clear	  about	  nature	  of	  task!	  	  
-‐	  For	  predicMon,	  more/beker	  data	  and	  good	  regularizaMon	  are	  key	  



ML	  and	  medicine:	  where	  are	  we	  going?	  



•  ML	  and	  AI	  methods	  solve	  decision	  problems	  using	  data,	  and	  ML	  and	  
staMsMcal	  concepts	  allow	  objecMve	  assessment	  of	  performance	  

•  Decision	  problems	  are	  ubiquitous	  in	  medicine	  à	  what	  would	  a	  truly	  ML-‐
assisted	  hospital	  or	  healthcare	  system	  look	  like?	  

•  Data-‐driven	  decisions,	  empirical	  assessment	  of	  both	  arMficial	  and	  
human	  intelligence	  based	  decision	  processes	  

•  Redefine	  diseases,	  idenMfy	  subgroups,	  direct	  therapy	  

•  Allow	  systems-‐level	  op7miza7on	  

Where	  are	  we	  going?	  



•  What	  would	  truly	  ML-‐assisted	  biological	  research	  look	  like?	  

•  Near-‐automated	  data	  collecMon	  

•  IteraMve,	  near-‐automated	  experimental	  design/acMve/reinforcement	  
learning	  

•  SystemaMc,	  empirical	  link	  to	  translaMonal	  goals	  

	  
Claim:	  we	  are	  currently	  far	  away	  from	  what	  	  

could	  be	  achieved	  even	  with	  current	  technology!	  

Where	  are	  we	  going?	  



(nobelprize.org)	  

You	  can	  see	  the	  computer	  age	  everywhere	  
but	  in	  the	  produc7vity	  sta7s7cs	  (Solow,	  1987)	  

(wikipedia)	  



•  ML	  and	  AI	  methods	  solve	  decision	  problems	  using	  data	  à	  this	  is	  
extraordinarily	  general	  	  

•  Some	  economists	  consider	  ML/AI	  as	  (potenMally)	  a	  GPT	  
•  Some	  characterisMcs:	  

•  Scalable,	  low	  marginal	  cost	  à	  expands	  scope	  of	  what’s	  possible	  
•  PotenMal	  to	  change	  enMre	  workflows	  or	  even	  systems	  
•  BUT:	  seeing	  the	  gains	  may	  require	  many	  changes	  at	  once	  (so-‐called	  

“complementary	  innovaMons”)	  
	  

ML/AI	  as	  “general	  purpose”	  technologies	  



•  Why	  aren’t	  we	  further	  along	  the	  road	  to	  truly	  data-‐driven	  medicine?	  

•  Is	  this	  a	  specific	  case	  of	  the	  Solow	  paradox?	  

•  Idea	  is	  that	  precisely	  because	  big	  advances	  require	  coupled	  changes,	  lags	  can	  
be	  long.	  Borne	  out	  by	  economic	  history	  (see	  e.g.	  Brynjolfsson	  et	  al.,	  2017)	  

Why	  don’t	  we	  have	  data-‐driven	  medicine	  yet?	  

Implica7on:	  collec7vely	  need	  to	  work	  not	  only	  on	  primary	  
innova7ons,	  but	  on	  all	  the	  things	  needed	  to	  take	  advantage	  of	  them	  



Can	  ML/AI/genomics/phenotyping	  contribute	  to	  keeping	  
this	  success	  story	  going?	  
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Is life expectancy approaching its limit?
Many—including individuals planning
their retirement and officials responsi-

ble for health and social policy—believe it
is. The evidence suggests otherwise.

Consider first an astonishing fact. Fe-
male life expectancy in the record-holding
country has risen for 160 years at a steady
pace of almost 3 months per year [Fig. 1

and suppl. table 1
(1)]. In 1840 the
record was held by
Swedish women,
who lived on aver-

age a little more than 45 years. Among na-
tions today, the longest expectation of
life—almost 85 years—is enjoyed by
Japanese women. The four-decade increase
in life expectancy in 16 decades is so ex-
traordinarily linear [r2 = 0.992; also see
suppl. figs. 1 to 5 (1)] that it may be the
most remarkable regularity of mass endeav-
or ever observed. Record life expectancy
has also risen linearly for men (r2 = 0.980),
albeit more slowly (slope = 0.222): the gap
between female and male levels has grown
from 2 to 6 years (suppl. fig. 2).

In addition to forewarning any looming
limit to the expectation of life, trends in
best-practice life expectancy provide infor-
mation about the performance of coun-
tries. The gap between the record and the
national level is a measure of how much
better a country might do at current states
of knowledge and demonstrated practice.
Although rapid progress in catch-up peri-
ods typically is followed by a slower rise,
life-expectancy trajectories do not appear
to be approaching a maximum (Fig. 2). 

The linear climb of record life ex-
pectancy suggests that reductions in mor-
tality should not be seen as a disconnected
sequence of unrepeatable revolutions but
rather as a regular stream of continuing
progress (2, 3). Mortality improvements re-
sult from the intricate interplay of advances

in income, salubrity, nutrition, education,
sanitation, and medicine, with the mix
varying over age, period, cohort, place, and
disease (4). Before 1950, most of the gain
in life expectancy was due to large reduc-
tions in death rates at younger ages. In the
second half of the 20th century, improve-
ments in survival after age 65 propelled the
rise in the length of people’s lives. For
Japanese females, remaining life expectan-
cy at age 65 grew from 13 years in 1950 to
22 years today, and the chance of surviving
from 65 to 100 soared from less than 1 in
1000 to 1 in 20 (1). The details are compli-
cated but the resultant straight line of life-
expectancy increase is simple.

World life expectancy more than dou-
bled over the past two centuries, from
roughly 25 years to about 65 for men and
70 for women (4). This transformation of
the duration of life greatly enhanced the
quantity and quality of people’s lives. It
fueled enormous increases in economic

output and in population size, including an
explosion in the number of the elderly (5,
6). Although students of mortality eventu-
ally recognized the reality of improve-
ments in survival, they blindly clung to the
ancient notion that under favorable condi-
tions the typical human has a characteris-
tic life-span. As the expectation of life
rose higher and higher, experts were un-
able to imagine its rising much further.
They envisioned various biological barri-
ers and practical impediments. The notion
of a fixed life-span evolved into a belief in
a looming limit to life expectancy.

Ultimate Expectations of Life
In 1928, Louis Dublin quantified this con-
sensus (7). Using U.S. life tables as a
guide, he estimated the lowest level to
which the death rate in each age group
could possibly be reduced. His calcula-
tions were made “in the light of present
knowledge and without intervention of
radical innovations or fantastic evolution-
ary change in our physiological make-up,
such as we have no reason to assume.” His
“hypothetical table promised an ultimate
figure of 64.75 years” for the expectation
of life both for males and for females. At
the time, U.S. life expectancy was about
57 years. Because Dublin did not have da-
ta for New Zealand, he did not realize that
his ceiling had been pierced by women
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Broken Limits to
Life Expectancy
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Fig. 1. Record female life expectancy from 1840 to the present [suppl. table 2 (1)]. The linear-re-
gression trend is depicted by a bold black line (slope = 0.243) and the extrapolated trend by a
dashed gray line. The horizontal black lines show asserted ceilings on life expectancy, with a short
vertical line indicating the year of publication (suppl. table 1). The dashed red lines denote projec-
tions of female life expectancy in Japan published by the United Nations in 1986, 1999, and 2001
(1): It is encouraging that the U.N. altered its projection so radically between 1999 and 2001.

J. Oeppen is with the Cambridge Group for the His-
tory of Population and Social Structure, Cambridge
University, Cambridge, CB2 3EN, UK. He is associated
with, and J. W. Vaupel is at, the Max Planck Institute
for Demographic Research, Doberaner Strasse 114,
D-18057 Rostock, Germany.

*To whom correspondence should be addressed. E-
mail: jwv@demogr.mpg.de

Enhanced online at
www.sciencemag.org/cgi/
content/full/296/5570/1029

(Oedden	  &	  Vaupel,	  2002)	  


