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CORRELATION IS NOT CAUSATION!

I ICE CREAM SALES
B SHARK ATTACKS

JAN MAR MAY JuL SEP NOV

Both ice cream sales and shark attacks increase when the weather is hot
and sunny, but they are not caused by each other (they are caused by
good weather, with lots of people at the beach, both eating ice cream

and having a swim in the sea)
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Events are connected by a common cause: confounding m Iﬁ::f::;‘
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R.A. Fisher vs. Richard Doll

R.A. Fisher (geneticist and statistician) was a fervent smoker.

Smoking Kills

“Smoking and lung cancer are confounded” “Control for all possible confounders”

Sir Richard Doll conducted:

@ 1950. Lung cancer study in 20 London hospitals. @ IE:"‘.'.:'Z“
@ 1954-2001 British Doctor Study to eliminate confounders.
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Eliminating confounders

Although in a marginal model
lung cancer = 6y + #1smoking + €,
it may seem like
f1 > 0 = "“smoking causes cancer”,

but this is the correlation = causation fallacy.

Controlling for confounders

Only if in a complete model

lung cancer = 6y + #1smoking + #rage + O3genetics + ... + €

we still have #; > 0, then we can hope for causation.
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Eliminating confounders (visually)

Instead of only checking for correlation,

Smoking € r———====- Lung cancer

we should control for other possible explanations:

Smoking Lung cancer

Age

Genetics

No wonder that the British Doctor Study lasted until 2001!

Ps. Philosophically, it is never finished: @ I%:I
Think Popper’s falsification vs verification.

Ernst C. Wit epistasis, genetic maps and microbial networks 5/41




Networks: eliminating confounders systematically

A direct influence network can have a causal interpretation,
. if all potential confounders are included.

< Smoking Lung cancer
Genetics Weakened immune
system

Aim of this talk J
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To estimate this (conditional independence) graph from data
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1. Epistatic interactions
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Epistasis (= “statistical interaction”)

Epistasis
when one gene locus masks or modifies a second gene locus phenotype
[ DOMINANT EPISTASIS
AaBb —
AB  Ab B b t
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Phenotype = squash colour @ Im,..,s...
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Arabidopsis Recombinant Inbred Line study

RIL cross made consisting of 367 Fg generation RIL Arabidopsis plants:
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The plants are genotyped at 90 markers.
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H% %‘“H

Certain genotype combinations may be
functionally incompatible.

Phenotype = survival

M <
&

’%‘% Aim of this genotype study
? { Approach

Extending graphical model for discrete

V V
%
§ ordinal data to determine the pattern of

Embryo lethal phenotype conditional independence relationships.

s

Detection of high-dimensional epistatic
selection across Arabidopsis genome.

Ernst C. Wit epistasis, genetic maps and microbial networks 10/41



RIL genotype data

For each of i =1,...,367 plants, we obtain genotype at j =1,...,90 loci:

LJ(-i) = genotype of marker j for plant i.

E.g., in heterozygous diploid population:

0  homozygous AA from parent 1
2 heterozygous AB

4 homozygous BB from parent 2
NA  if genotype is missing

PS. Although in RIL genotype is typically homozygous (as in figures),

we do have some heterozygous genotypes too.
@ I:l:lilv.erslﬂ
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“Eliminating confounders” idea (1)

Normally, only neighbouring loci are informative about a locus:

Ly = 0120 + e

Ly = 0xl;+ 023L3 +e

L3 = 0321 034L4 + €3
L, L. L, L. Ls

Genetic laws responsible:

@ Genetic linkage

@ Independent assortment of chromosomes
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“Eliminating confounders” idea (2)

IF non-neighbouring locus is predictive, then possibly sign of epistasis:

L = 0121 +01als + €1
Ly = 6Oxl;+ 0r3L3 + e
L3 = 3oL 034L4 + €3

— T

L, L. L: L L
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Inference idea

The non-zeros in the matrix ©
—— O O3

01 —— O3
o—
31 O3 ——

determine the underlying linkage & epistasis structure.

(A bit) more precisely . ..
Locus data L() = (Lgi), e Lgo)) can be modelled as

LD ~ N(u,071),

for i =1,...,367 Fg Arabidopsis plants.

o 0 @ I
COI’(L]_, L4| reSt) = — Y14 . italiana

v
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Gaussian Copula

Assume latent variable Z ~ N(0,©7!) in the following way:

Relationship between latent and observed variables
n% f 1 m )
§ T T T
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y.
< )
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A set of cut-off points ° L= F.’1(¢(Zj))
—00=0¢j0<G1<G2<... <Gy =00 !
(i) _ kj—l )
° "= E/ZO Ix 1{Cj,l<zj(l)fcj,l+1}
v
‘o |

NOTE: Observations i =1,...,367, Markers j =1,...,90.
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Penalized graphical Gaussian models

To achieve “sparse” graph structure ©, introduce an {1 penalty:

~

© = argmax log|®| — Tr(5O)
subject toz |Kij| < «
i#j

This problem, a.k.a. Graphical Lasso, has been considered by

@ Meinshausen and Buehlman (2006): implemented in huge,
@ Banerjee (2007) and

o Friedman et al. (2008): implemented in glasso.

Or a Bayesian version:

@ Mohammadi and Wit (2015): R-package BDgraph. @ IE:":Z{,'Z"
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L, penalty = sparsity

Maximize £(3) = —(y — XB)'(y — XB), subject to ||3]||1 < 3.

Lrgen ML

Vi #
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Sparse inference of GCGM

Likelihood:

1v(0) ~ Iog|@|—72/ / NTeVdz, ... dz,

Penalized EM algorithm
E-step: Compute QA(©|07) = E[/], ,(O)]Y, em]

Q(e1e'™) = Iog 21 4 ~ {Iog O] — tr{| = Z E(ZzVZOT yWelmy e} — Al|©])

M-step: © = arge max Q(©|©™) subject to ||O]]1 < A.
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E-step: Approximating conditional expectations fast

N N @ ) ™ @O, R 1< <
E(zf(')z,(')T |y )~ { E(Z@)ZI v, gE(Z, [ y1),7) ff 1<k#I1<p
E(z,’ | yD.™) if k=1
T ¢(g;ij/(,-)_1 - d’(gj(,i})/(,-))
ECD |y 7 0 x5 EED |07 C) ¢ < 5
J b= —j,—j J ¢(S(‘:)(i))_¢(g('l)(i) ) J
JY; Jyj -1
i)? NR LT T N N ™1 3 ~(i)?
" 1y 070~ 70 EE 1y O T )
O] 5 50) 50
J L, 1¢(5j (,-)71)*6”(,-@(5] ) -
’j Yj )j ’J N(I)
o oGV, — 0G0, )
iy Sy -1
i e
Take-away message: all explicit, so
NG _% log 27 + g{log o] — tr{50} — Allo|Ix @ I%gg:x}:,
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M-step: Large scale maximization via SQUIC

The orginal QUIC algorithm considers an approximation
1
QRO+ A|O") ~ —tr((S — W)A) — Etr(WAWA) —A|©+ Allg,

for one-dimensional maximization steps A = c(eje; + eje]).
Bottlenecks of QUIC algorithm:
@ dense empirical covariance matrix S is reference for each §j;.

@ © + A has to be checked for positive-definiteness.
e W =0"1is required.

We now work with Olaf Schenk to extend apply SQUIC method:

© method is fast

@ on laptop can deal with 100,000 variables @ I%:"‘
(on HPC up to 10 million)
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Selection of tuning parameter

eBIC,(\) = —2Q(6,164™) + 2H(8,|6\™) + df (6)

where

H(6,6\™) = Elloglz,ep(8))|z € D; 6™

df(©,) = (logn+ 4vlogp)d
d = Y 1(6x#0) and v € [0,1].
1<k<I<p

Alternatively, a CV based estimator is given by

a = Kt —S)oh]T(Ka® K —S)ol
4f(8y) — 2 2r=1 <LK = S) o WT(Ky © Ky)el(S = Si) o h]
(n—1)
o Sk = XkaT, @ Iggil::::’;n
o ly=1 * (K != 0), an indicator matrix.
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Arabidopsis thaliana experiment

A RIL cross between two A.thaliana lines

Columbia (Col-0) and Cape Verde Island (Cvi-0)
p = 90 SNP markers, n = 367 individuals
Heterozygous population: Yj(') € {0,1,2}
Contains missing genotypes

Its genome has 5 chromosomes
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Epistatic selection in A.thaliana RIL
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Epistatic selection in A.thaliana RIL

!
’\ Warkers

T

Weak roots

Embryo lethality’

Bikard, David, et al. Science 323.5914 (2009): 623-626. aala
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Genetic inbreeding experiment in Maize

p = 1106 SNP markers ; n = 193

R L. Lok I

Existence of such trans-chromosomal edges
reveals “aberrant” marker-marker associations
that are due to epistatic selection.
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2. Genetic map construction




From epistasis to genetic maps...

From this picture, it is clear that...

epistasis is a little boat in the ocean of genetic linkage.

Sem s wn
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... but sampling design is important!

Consider a two parents with genotypes of two loci very close together:
AB x Ab and AB x aB,
So all off-spring will have genotype

A . x.B

In fact, each of the following will have probability 1/4:
Ab x aB, AB x aB, Abx AB, AB x AB.

Conclusion

Even though loci are really close together, the off-spring genotype contains
NO information of this fact.
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3 different population types

Consider

@ genotype data Y
@ on 10 markers
@ of a polyploid species

e from 3 different population types

Yy Y, Y3 Yy Y, Y, m\@ m Ys Ym\g Y, Ys
L] Ld L] L] o L] L] L] L] . L] . *——8e
e S
. i od L4 L ./.\I L] L] ./T\. /T\ L ]
——e——o—— [ S
Yo Y7 Yg Yo Yio Yo Y, Yg Yo Y10 Yo Y, Yg Yo Y10
(a) (b) (c)
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Mapping algorithm

a)
b)
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It beats the competition
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Estimated number of linkage groups (LGs) for OWB data set

Estimated # Size of the LGs
LG
netgwas 7 140, 199, 211, 187,
236,182,173
MSTMap 1 1328

Comparison of ordering accuracy between netgwas and MSTmap.
In this Table assumed MSTMAP has estimated correctly the number
of LGs in the OWB data set.

Linkage Group Sensitivity Score
(LG) netgwas MSTMap
1 0.86 0.96
2 0.78 0.52
3 0.78 0.92
4 0.74 0.49
5 0.71 0.38
6 0.61 0.50
7 0.70 0.61
Average 0.74 0.63

A\
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3. Microbial interaction networks
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symbiotic relationship

Microorganisms play a central role in many biological processes.

Complex system of interacting species, e.g., involved in plant growth.
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Metagenomic data from 16S rRNA sequencing

Pool Quality control

amplicons, - demultiplex
’ Sequence

Sample Sample Sa
1 2

3

4l

@oTu1
ple P Cluster
sequences
@otus into
?\ operational
° taxonomic
Amplicon S units (OTUs)
library Ootun
Assign OTUs
taxonomy

o

CR

(W [ 1] % (e [T Tn[ )
16S rRNA gene

[ Bacteria A
[ Bacteria B
Extract [ Bacteria C
gDNA
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Human microbiome project

The study collected microbiomes of healthy individual (Methe et al. 2012)

We focus on 306 most prevalent bacteria (OTUs) in 360 stool samples.
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Sequence read data

For each stool sample i = 1,...,360, we measure for OTU j =1,...,306:

O}i) = read count of OTU j for stool sample J.

It is well-known that the read count O}i)

depends on sequencing depth of sample J,
depends particular peculiarities of OTU

has a lot of zero counts

is overdispersed

We control for all these nuisance effects,

O}i) ~  Zero-inflated negative binomial

where

log Eg OJ(") = seq. depth; + o+ B + . .. m Imz::a.,
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Microbial network as Copula Graphical Model

But most importantly, the OTUs depend on each other:

Copula graphical model for interactions:

@ Precision matrix © is associated with interaction graph;
O Latent Gaussians are generated via Z() ~ N(0,071).

© Observed count O}i) is generated by transforming Zj(i) via ZINB.
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MAGMA: inferring microbial interactions

A MAGMA SPIEC-EASI

OTU phylum

“e o Firmicutes
Proteobacteria
e Bacteroidetes

Compared to other methods, our method MAGMA

o Finds fewer spurious links

@ Is able to insert real biology in the read count distributions
@ Accounts for variability in sequencing depth between samm Id”.".‘.'."""

Svizzera
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@ resulting in a cleaner interpretation of the results

Ernst C. Wit epistasis, genetic maps and microbial networks 39/41



Wrapping up

Conclusions
@ Confounding is the real enemy of causality.

@ Networks account for confounding

Detection of epistatic selection
Construct genetic map in in any polyploid species.
Reconstruct microbial interaction networks from sequence read counts.

Software

netgwas: Our multi-core R package is available on CRAN

rMAGMA: Our microbial network R package is available on github.
@ |§zs;z:;=
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