Challenges in RCTs solved with joint models?

Floor van Oudenhoven

Nutricia Research, Erasmus Medical Centre

Joint work with Prof. Dr. Dimitris Rizopoulos and Dr. Sophie Swinkels

23 November 2018

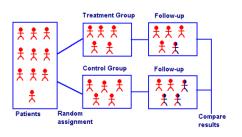
Overview

Introduction

2 Challenge

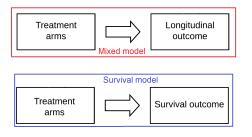
Proposed method

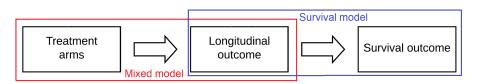
Randomized controlled trial



- A type of clinical trial
- Compares two (or more) groups:
 - Treatment vs. placebo
 - Or new treatment vs. existing treatment
 - Patients are randomly assigned to the groups
 - Goal: to assess the treatment effect

- Joint models combine longitudinal and survival data
- Methods for a separate analysis are well established





Mixed effects model

$$y_i(t) = m_i(t) + \epsilon_i(t)$$

= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \epsilon_i(t)$

• where $m_i(t)$ is the *true* and *unobserved* longitudinal outcome, with history $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < s\}$

Mixed effects model

$$y_i(t) = m_i(t) + \epsilon_i(t)$$

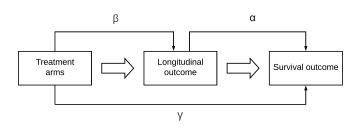
= $x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \epsilon_i(t)$

- where $m_i(t)$ is the *true* and *unobserved* longitudinal outcome, with history $\mathcal{M}_i(t) = \{m_i(s), 0 \le s < s\}$
- Survival model (Cox model)

$$h_i(t|\mathcal{M}_i(t), w_i) = h_0(t) \exp\{\gamma^\top w_i + \alpha m_i(t)\}$$

ullet where lpha quantifies the association between the longitudinal outcome and the risk of an event

 Interest in the process of how a treatment affects a survival outcome (e.g., Alzheimer studies)



- The treatment effect is a combination of:
 - The (indirect) treatment effect in the longitudinal process
 - The (direct) treatment effect in the survival process

Overview

Introduction

2 Challenge

3 Proposed method

Mixed effects model

$$y_i(t) = m_i(t) + \epsilon_i(t)$$

= $\beta_0 + \beta_1 t + \frac{\beta_2}{2} (t \times trt_i) + b_{i0} + b_{i1} t + \epsilon_i(t)$

Survival model

$$h_i(t) = h_0(t) \exp{\{\gamma trt_i + \alpha m_i(t)\}}$$

• What is the **overall treatment effect**?

Mixed effects model

$$y_i(t) = m_i(t) + \epsilon_i(t)$$

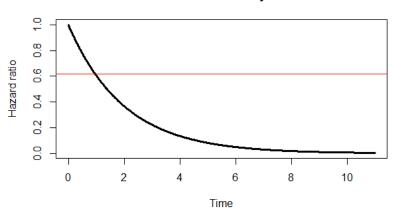
= $\beta_0 + \beta_1 t + \frac{\beta_2}{2} (t \times trt_i) + b_{i0} + b_{i1} t + \epsilon_i(t)$

Survival model

$$h_i(t) = h_0(t) \exp{\lbrace \gamma trt_i + \alpha m_i(t) \rbrace}$$

- What is the **overall treatment effect**?
- First guess: $\gamma + \alpha \beta_2 t$

Overall treatment effect joint model



 Treatment effect is the hazard ratio between patient i (treatment) and patient i' (control)

$$\frac{h_i(t)}{h_{i'}(t)} = \frac{\exp[\gamma + \alpha \{\beta_0' + \beta_1't + \beta_2(t \times trt_i) + b_{i0} + b_{i1}t\}]}{\exp[\alpha \{\beta_0' + \beta_1't + b_{i'0} + b_{i'1}t\}]}$$

 Treatment effect is the hazard ratio between patient i (treatment) and patient i' (control)

$$\frac{h_{i}(t)}{h_{i'}(t)} = \frac{\exp[\gamma + \alpha\{\beta_{0}' + \beta_{1}'t + \beta_{2}(t \times trt_{i}) + b_{i0} + b_{i1}t\}]}{\exp[\alpha\{\beta_{0}' + \beta_{1}'t + b_{i'0} + b_{i'1}t\}]}$$

$$= \exp\{\gamma + \alpha\beta_{2}t + \alpha(b_{i0} + b_{i1}t - b_{i'0} + b_{i'1}t)\}$$

• Patient i and i' are two different patients, i.e., $b_i \neq b_{i'}$

• exp() is a non-linear link function

$$E[g(X)] \neq g(E[X])$$

$$E_b[g(\gamma + \alpha\beta_2 t + \alpha(Zb_i - Zb_{i'})] \neq g(E_b[\gamma + \alpha\beta_2 t + \alpha(Zb_i - Zb_{i'})])$$

- ullet Average treatment effect eq the treatment effect for average subject
- The overall treatment effect $\gamma + \alpha \beta_2 t \rightarrow$ Subject-Specific (SS) interpretation

Marginal and Subject-Specific effects

- Marginal and SS effects differ in value and interpretation
- SS effects
 - Conditional on the random effects
 - Individual-based inference (growth studies, personalized medicine)

Marginal effects

- Population averaged effects
- Population-based inference (testing new drugs for efficacy)

Marginal versus Subject-Specific effects

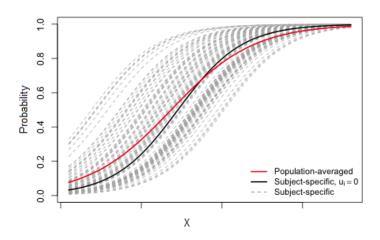
- SS overall treatment effect → effect of receiving the treatment instead of placebo for a specific patient, i.e., it is conditional on her random effects
- Marginal overall treatment effect \to average treatment effect in population \to currently not available

Marginal versus Subject-Specific effects

- Similar situation: Clustered longitudinal data with a binary outcome
 - SS approaches: Generalized Linear Mixed Models (GLMMs)
 - Mixed models are a special case of GLMMs
 - Marginal approaches: GEE, Marginalized Multilevel Model
 - [Hedeker, 2017] proposed a method for the marginalization of regression parameters of GLMM

Hedeker et al. (2017). A note on marginalization of regression parameters from mixed models of binary outcomes. Biometrics

Marginal versus Subject-Specific effects



The average probability \neq probability for the average patient

Overview

Introduction

2 Challenge

3 Proposed method

- ullet Goal: marginal overall treatment effect $\gamma^M + lpha^M eta_2^M t$
- Remember

$$h_i(t) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha \underbrace{(x_i^{\top}(t)\beta + z_i^{\top}(t)b_i)}_{m_i(t)}\}$$

- ullet Goal: marginal overall treatment effect $\gamma^M + lpha^Meta_2^M t$
- Remember

$$h_i(t) = h_0(t) \exp\{\gamma^{\top} w_i + \alpha \underbrace{(x_i^{\top}(t)\beta + z_i^{\top}(t)b_i)}_{m_i(t)}\}$$

Consider the marginal log hazard ratio versus the baseline hazard

$$\log \left\{ \frac{h_i(t)}{h_0(t)} \right\}^M = w_i^{\top} \gamma^M + \alpha^M \{ x_i^{\top}(t) \beta^M \}$$

• Can be approximated numerically, e.g. by Monte Carlo integration

$$\log \left\{ \frac{h_i(t)}{h_0(t)} \right\}^M \approx \log \int_b \exp[w_i^\top \gamma^{SS} + \alpha^{SS} \{x_i^\top(t)\beta^{SS} + z_i^\top(t)b_i\}] f(b) db$$

Marginal log hazard ratio versus the baseline hazard

$$\log \left\{ \frac{h_i(t)}{h_0(t)} \right\}^M = w_i^{\top} \gamma^M + \alpha^M \{ x_i^{\top}(t) \beta^M \}$$

Marginal log hazard ratio versus the baseline hazard

$$\log \left\{ \frac{h_i(t)}{h_0(t)} \right\}^M = w_i^{\top} \gamma^M + \alpha^M \{ x_i^{\top}(t) \beta^M \}$$

Can be rewritten as

$$\log HR_i^M = w_i \gamma^M + x_i \alpha^M \beta^M = \tilde{X}_i \theta^M$$

Marginal log hazard ratio versus the baseline hazard

$$\log \left\{ \frac{h_i(t)}{h_0(t)} \right\}^M = w_i^{\top} \gamma^M + \alpha^M \{ x_i^{\top}(t) \beta^M \}$$

Can be rewritten as

$$\log HR_i^M = w_i \gamma^M + x_i \alpha^M \beta^M = \tilde{X}_i \theta^M$$

Where:

$$\tilde{X}_i = \begin{bmatrix} w_i & x_i \end{bmatrix} \qquad \theta^M = \begin{bmatrix} \gamma^M \\ \alpha^M \beta^M \end{bmatrix}$$

•

$$\log HR_i^M = w_i \gamma^M + x_i \alpha^M \beta^M = \tilde{X}_i \theta^M$$

$$\log HR_i^M = w_i \gamma^M + x_i \alpha^M \beta^M = \tilde{X}_i \theta^M$$

• Multiplying both sides by $(\tilde{X}^{\top}\tilde{X})^{-1}\tilde{X}^{\top}$:

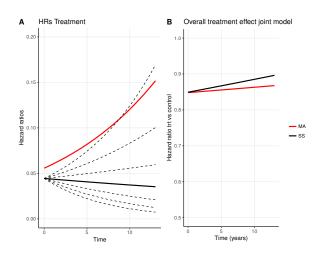
$$\theta^{M} = \left(\sum_{i=1}^{N+n} \tilde{X}_{i}^{\top} \tilde{X}_{i}\right)^{-1} \left(\sum_{i=1}^{N+n} \tilde{X}_{i}^{\top} \log HR_{i}^{M}\right)$$

• Gives us: $\gamma^M + \alpha^M \beta_2^M t$

Results proposed method

- As an example we use the available Prothro dataset
- 488 patients with liver cirrhosis
- Longitudinal outcome: prothrombin
- Survival outcome: patient survival
- Goal:
 - Compare the marginal and SS overall treatment effect on patient survival
 - Compare the marginal and SS hazard ratios (log HR_i^M vs. log HR_i^{SS})

Results proposed method

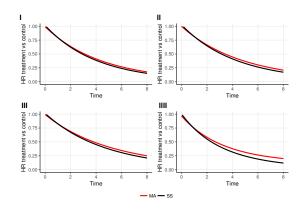


- A) Hazard ratios versus the baseline hazard
- B) Overall treatment effect

Simulation study

- We investigated the effect of two parameters:
 - ullet The association parameter lpha
 - ullet The variance of the random slope $\Sigma_{b_1^2}$

Simulation study



- 1) $\alpha=$ low, $\Sigma_{b_1^2}=$ low 2) $\alpha=$ low, $\Sigma_{b_1^2}=$ high 3) $\alpha=$ high, $\Sigma_{b_1^2}=$ low 4) $\alpha=$ high, $\Sigma_{b_1^2}=$ high

Conclusion

- The **overall treatment effect** in joint model is a combination of the treatment effect in the longitudinal and survival model
- The obtained treatment effect has a Subject-Specific interpretation
- Whether Subject-Specific or marginal effects are desirable depends on the target of inference
- A marginal overall treatment effect can be obtained using the proposed method

References

Hedeker et al. (2017)

A note on marginalization of regression parameters from mixed models of binary outcomes.

Biometrics 74(1), 354 - 361.

Rizopoulos (2012)

Joint models for longitudinal and time-to-event data: With applications in R.

Chapman and Hall/CRC.

Thank you!

